
Важные события

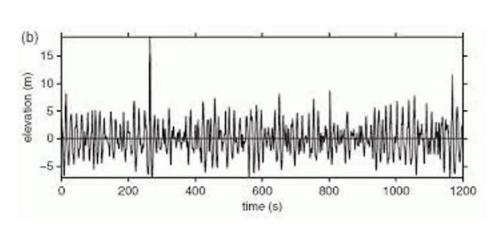
- Легенды и сказания
- Кущение нефтянной полупогруженной платформы Draupner(01.01.1995)
- Выбор релевантного показателя (2009)
- Воспроизведение в вычислительным эксперименте при естественных условиях (2010)
- Воспроизведение феномена в бассейне, путем пересечения волн(2018)

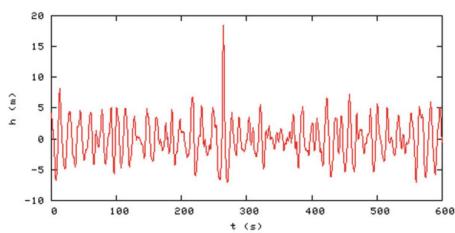
Волна

Амплитудный критерий

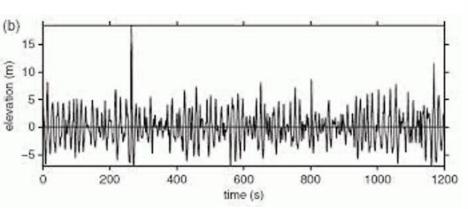
Список высот волн

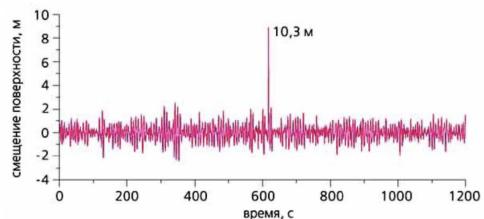
```
[1.998,2.434, 3.623,4.023,5.134,3.654,2.012,4.345,2,6.2,8,4.01,20,3,2,4,1]
```


Значения амплитудного критерия

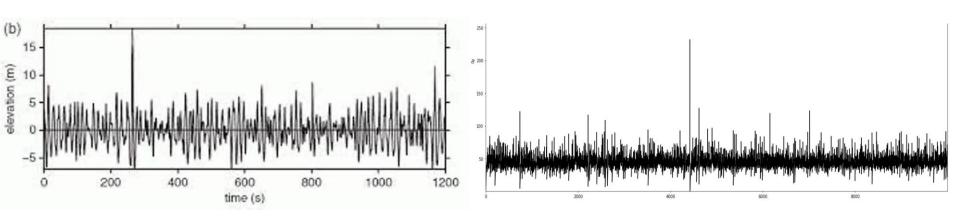

```
[1. 1. 1. 1.05231494 1.12132795 0.79807797 0.4711576 0.96541253 0.44437861 1.25875546 1.35140842 0.67739347 2.2894297 0.34341446 0.22894297 0.50312356 0.12578089]
```

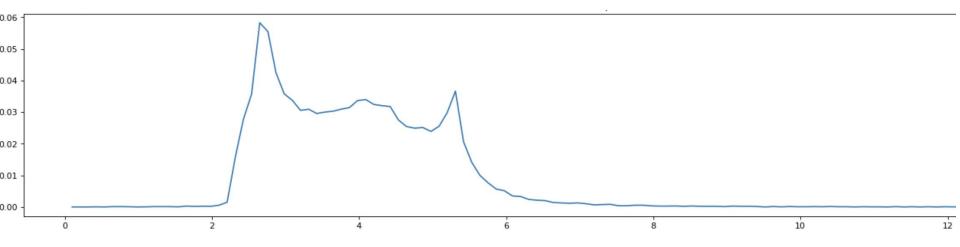

Вычислительный эксперимент и Новогодняя волна

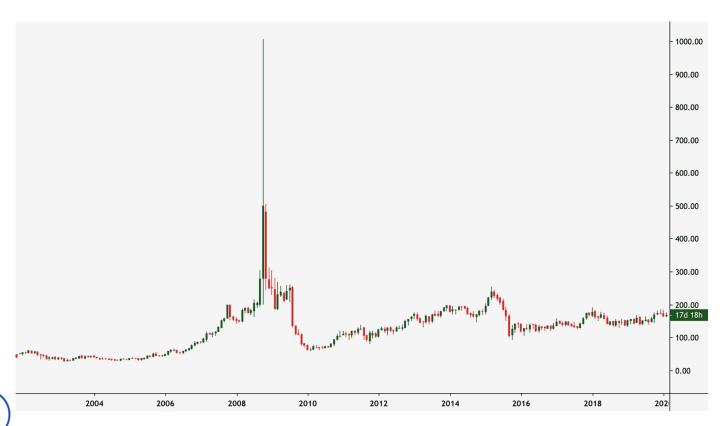




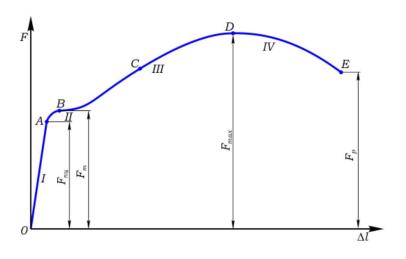
Вычислительный эксперимент и аномальная черноморская волна




Вычислительный эксперимент и результат стохастической модели


Распределение высот волнограммы вычислительного эксперимента

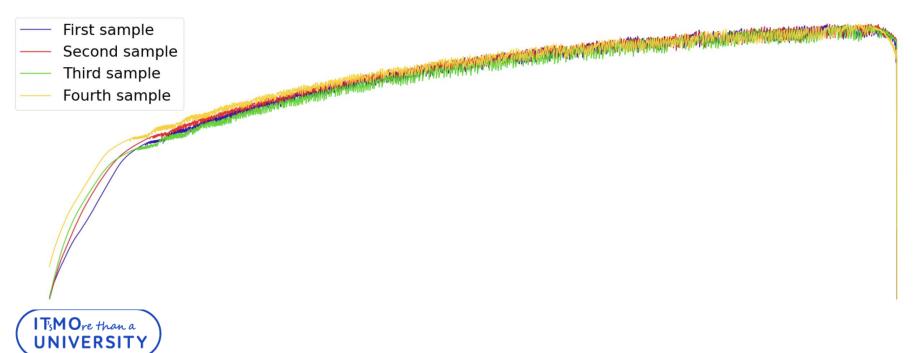
Волна-убийца?

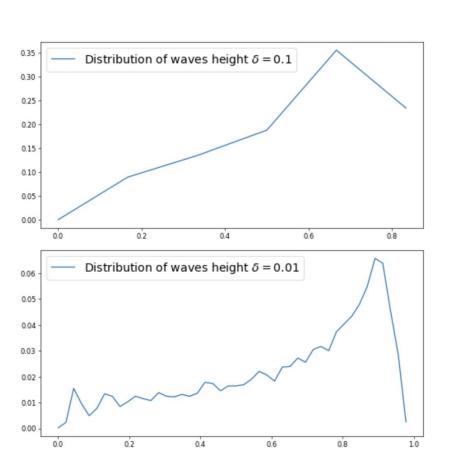


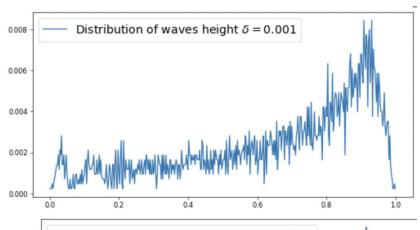
Растяжение пластины

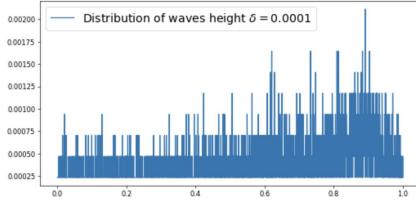

```
/ — участок пропорциональности;// — участок текучести;
```

/// — участок самоупрочнения;

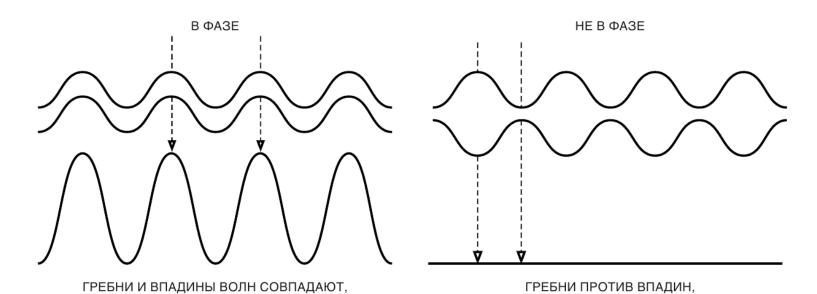

IV — участок разрушения.


Проявление эффекта ПЛВШ


На сплаве алюминии



Распределения высот



ВОЛНЫ ГАСЯТ ДРУГ ДРУГА

Гипотеза 1

ВОЛНЫ УСИЛИВАЮТ ДРУГ ДРУГА

Гипотеза 2

Энергетическое пространство

$$I_t: V \to K \subset \mathbb{R}$$

V — множество непересекающихся объемов.

Энергетическая оценка

$$J_t(v_i) = w_i(t).$$

Траектории энергии

Конечные последовательности $u=(v_j,\ldots,v_i)=ji$. U — множество всех конечных последовательностей.

Определение 1. Конечные последовательности $a = (v_j, ..., v_i)$ и $b = (v_j, ..., v_k)$ принадлежат одному классу эквивалентности $[u] \subset U$, если $v_j = v_i$ и $v_i = v_k$.

Введем операцию склейки «»». Через G обозначим множество всех последовательностей состоящих из двух элементов (v_i, v_i) .

Траектории энергии

Утверждение. Если для любого i и $c \neq e_{ii}$ существуют $a \neq e_{ii}$ и $b \neq e_{ii}$ такие, что $c = a \circ b$, где $a, b, c \in G$, то $\langle V, G \rangle$ — полный граф.

Определение 2. Последовательность $u=(v_i,v_j)$ называется связанной в момент времени t, если между элементами v_i и v_j существует обмен энергией в соответсвующей момент времени.

 $\mathfrak{D}=\{D^u_t\colon W o W\}_{u\in G}\subset \mathsf{C}^1(T)$ —двухпараметрическое семейство замкнутых операторов, таких что для любого $D^u_t\in \mathfrak{D}$ верно $D^u_0=I$.

Определение 3. Пусть (v_i, v_j) — связанная последовательность в момент времени τ . Если при $u=ji=(v_j,v_i)$ выполняется равенство $D_t^{ij}J_{\tau}(v_i)=J_i(v_j),$

то v_i называется валентной точкой оператора D_t^{ji} в момент времени t при $au \leq t$.

Если для оператора $D_t^{J^l} \in \mathfrak{D}$ существует валентная точка v_i , то определим для него норму в энергетическом пространстве H по формуле

$$\left\|D_t^{ji}\right\|_H = \left|\int_{\tau}^t F\left(D_t^{ji}\right) dJ_{\tau}(v_i)\right| = \left|J_t(v_i) - J_{\tau}(v_j)\right|,$$

где интегрирование происходит по Лебегу, а функция F имеет вид:

$$F(D_t^u) = \begin{cases} D_t^u, & \frac{dD_t^u}{dt} \ge 0\\ -D_t^u, & \frac{dD_t^u}{dt} < 0 \end{cases}.$$

Лемма. Для любой последовательности, состоящей из двух элементов $v_{_i}$ и $v_{_j}$ существует оператор $\overline{D^u_t}$, причем единственный с точностью до выбора валентной точки.

Согласно лемме с учетом утверждения становится корректной запись процесса обмена энергии в следующем виде: $D_t(w) = J_t(v_i)$.

Для любых \widehat{D}_t^a , $\overline{D}_{ au}^b \in \mathfrak{D}$ определим композицию операторов как $\widehat{D}_t^a\overline{D}_{ au}^b = \widetilde{D}_{t+ au}^{a\circ b}$,

при $\tau \leq t$ и $a \circ b = c \sim u \in G$.

Пусть $\Delta \tau$ промежуток времени, принимаемый за условную единицу, тогда следующая запись описывает динамический процесс:

$$\left(D_{n\Delta\tau}(w)\right)^n = J_t(v_i),$$

где $n \in N$ количество временных интервалов.

Классы динамических операторов

Произведём разбиение множества $\mathfrak{D} = \mathfrak{S} \cup \mathfrak{L}$, где \mathfrak{S} — операторы с нулевой нормой в энергетическом пространстве, а \mathfrak{L} — остальные операторы.

Пусть $2w \neq 0$ — условная единица измерения энергии, которую возможно зарегистрировать, тогда в $\mathfrak L$ возникает упорядоченная иерархия $[D_t] = \mathfrak L_n$, что если $D_t \in \mathfrak L_n$ то справедлива оценка:

$$||D_t||_H \leq \sum_{k=1}^t 2w \uparrow^{n-1} k.$$

Классы динамических операторов

Пусть $D_t \in \mathfrak{Q}_2$ тогда справедлива оценка:

$$w(t+1)t \le ||D_t||_H \le \frac{2w}{2w-1}e^{\ln(2w)t},$$

при этом корректна запись обмена энергии в системе в следующем виде:

$$\frac{\partial w(t)}{\partial t} = J_t(v_i).$$

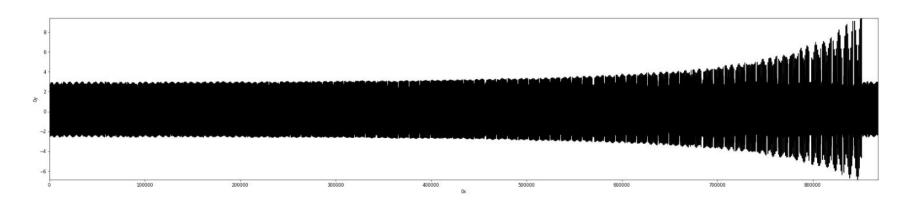
Определение 4. Волной убийцей называется волна v, для которой амплитудный критерий $\mu(v) \geq 2.1$.

$$\mu(v) = \frac{h_t(v)}{s_t} = \frac{\|D_t\|_H}{\frac{1}{|M|} \sum_{\tau \in M} \|D_\tau\|_H} \ge \frac{2\|D_t\|_H}{\|D_{t-1}\|_H + \|D_{t-2}\|_H}$$

При w=1, t=3 справедливо следующее неравенство

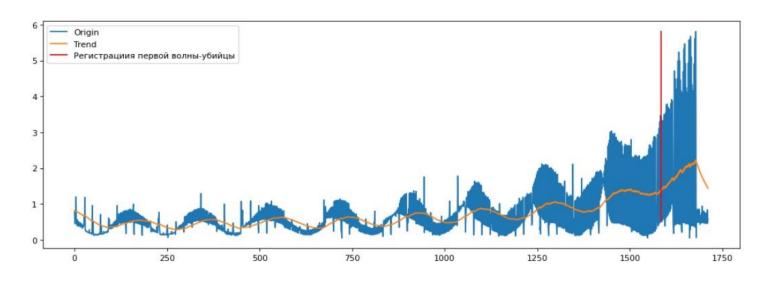
$$1.5 \le \frac{2\|D_t\|_H}{\|D_{t-1}\|_H + \|D_{t-2}\|_H} \le 8.$$

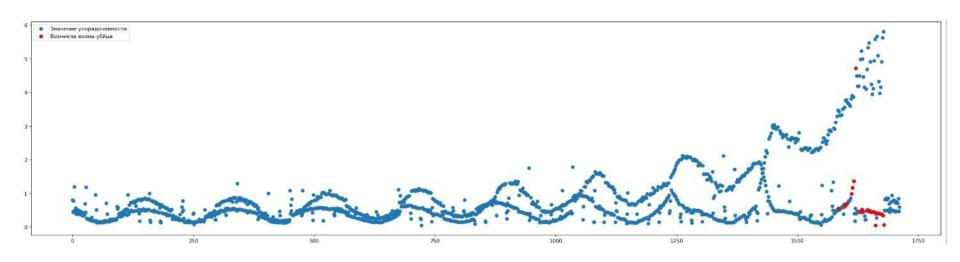
Энергетические оценки

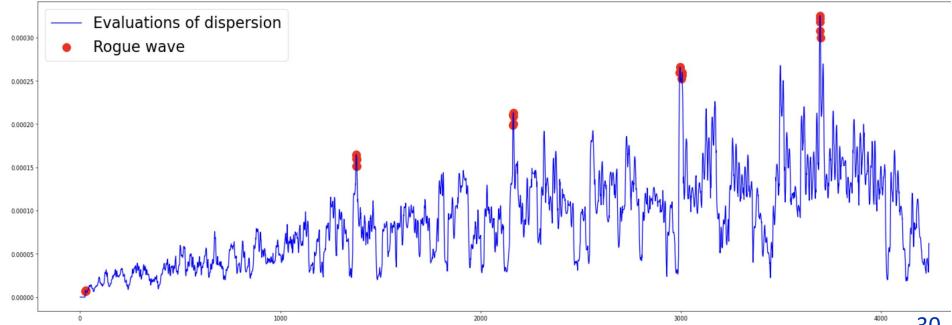


$$\frac{2\|D_{t}\|_{H}}{\|D_{t-1}\|_{H} + \|D_{t-2}\|_{H}} \le \frac{2\|D_{t}\|_{H}}{2\min(\|D_{t-1}\|_{H}, \|D_{t-2}\|_{H})} \le \frac{\|D_{t}\|_{H}}{\|D_{t-2}\|_{H}} \le \frac{2e^{t \ln 2w}}{(2w-1)(t-1)(t-2)} = \frac{2e^{3 \ln 2}}{2} = 8.$$

$$\frac{2\|D_{t}\|_{H}}{\|D_{t-1}\|_{H} + \|D_{t-2}\|_{H}} \ge \frac{2\|D_{t}\|_{H}}{2\max(\|D_{t-1}\|_{H}, \|D_{t-2}\|_{H})} \ge \frac{\|D_{t}\|_{H}}{\|D_{t-1}\|_{H}} \ge \frac{(2w-1)(t+1)t}{2e^{(t-1)\ln 2w}} = \frac{4\cdot 3}{2e^{2\ln 2}} = 1.5.$$







Очищенная волногрмамма из эксперимента по растяжению образцов аллюмия

Спасибо за внимание!

v.kazankov98@itmo.ru

