Problems and solutions for NCUMC 2017. 23.04.2017

1. Do three vectors $\vec{a}, \vec{b}, \vec{c}$ in \mathbb{R}^{3} exist such that the following three inequalities take place simultaneously:

$$
\sqrt{3}|\vec{a}|<|\vec{b}-\vec{c}|, \quad \sqrt{3}|\vec{b}|<|\vec{c}-\vec{a}|, \quad \sqrt{3}|\vec{c}|<|\vec{a}-\vec{b}| ?
$$

Solution. Let us find squares of each inequality and summarize all the inequalities. One gets

$$
3\left(\vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}\right)<2\left(\vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}\right)-2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})
$$

Hence, one comes to incorrect inequality

$$
(\vec{a}+\vec{b}+\vec{c})^{2}<0
$$

It means that such triplet of vectors does not exist.
2. Find all non-zero functions $f: \mathbb{C} \rightarrow \mathbb{C}$ satisfying the equality $f(x) f(y)=$ $f\left(x+e^{i t} y\right)$ for fixed $t \in(0, \pi)$. and any $x, y \in \mathbb{C}$

Answer. $f(x)=1$ for all $x \in \mathbb{C}$.
Solution. First we'll show that $f(x) \neq 0$ for all $x \in \mathbb{C}$. If instead there would be z such that $f(z)=0$, then $f(x)=f(x-\varepsilon z+\varepsilon z)=f(x-\varepsilon z) f(z)=0$ $\left(\varepsilon=e^{i t}\right)$ for all $x \in \mathbb{C}$ which contradicts to the non-nullity of f.

Now, putting $y=\frac{1}{1-\varepsilon} x($ as $\varepsilon \neq 1)$ gives $f(x) f(y)=f(x+\varepsilon y)=f(y)$. Due to $f(y) \neq 0$, one has $f(x)=1$ for all $x \in \mathbb{C}$.
3. Find the product of all solutions to the equation

$$
\sum_{k=1}^{2017} \frac{1}{z-\varepsilon_{k}}=0
$$

where $\varepsilon_{k}=e^{\imath k \pi / 1009}$ are different zeros of the polynomial $z^{2018}-1$.

Solution. We show it for a general case, i. e. for

$$
\sum_{k=1}^{n-1} \frac{1}{z-\varepsilon_{k}}=0
$$

where ε_{k} are different zeros of the polynomial $z^{n}-1$.
Let us denote $P(z)=\prod_{k=1}^{n-1}\left(z-\varepsilon_{k}\right)=\frac{z^{n}-1}{z-1}$. Then

$$
\sum_{k=1}^{n-1} \frac{1}{z-\varepsilon_{k}}=\frac{\sum_{k=1}^{n-1} \prod_{j \neq k}\left(z-\varepsilon_{j}\right)}{\prod_{k \neq 0}\left(z-\varepsilon_{k}\right)}=\frac{P^{\prime}(z)}{P(z)}
$$

Hence the solution to the given equation is the solution to $0=P^{\prime}(z)=\frac{(n-1) z^{n}-n z^{n-1}+1}{(z-1)^{2}}$, and vice-versa. So the all solutions in question are zeros of the polynomial $(n-1) z^{n}-n z^{n-1}+1$ without two $1-\mathrm{s}$ (which are the zeros of the denominator). By Vieta's formula the requested product (multiplied by 1^{2}) is equal to $(-1)^{n} \frac{1}{n-1}$.

In our case $n=2018$, so the answer is $\frac{1}{2017}$.
4. Does the following series converge $\sum_{n=1}^{\infty}\left\{(\sqrt{2}+1)^{2 n}\right\}$? Here $\{a\}=a-[a]$, $[a]$ is the maximal integer less or equal a.

Answer. The series diverges.
Solution. Consider the behavior of the series term. Binomial formula leads to the following two expressions:

$$
\begin{aligned}
& (1+\sqrt{2})^{2 n}=1+\binom{2 n}{1} \cdot \sqrt{2}+\binom{2 n}{2} \cdot(\sqrt{2})^{2}+\binom{2 n}{3} \cdot(\sqrt{2})^{3}+\ldots+\binom{2 n}{2 n} \cdot(\sqrt{2})^{2 n} \\
& (1-\sqrt{2})^{2 n}=1-\binom{2 n}{1} \cdot \sqrt{2}+\binom{2 n}{2} \cdot(\sqrt{2})^{2}-\binom{2 n}{3} \cdot(\sqrt{2})^{3}+\ldots+\binom{2 n}{2 n} \cdot(\sqrt{2})^{2 n}
\end{aligned}
$$

By summarizing of these two equalities, one obtains

$$
\begin{gathered}
(1+\sqrt{2})^{2 n}+(1-\sqrt{2})^{2 n}=2\left(1+\binom{2 n}{2} \cdot(\sqrt{2})^{2}+\binom{2 n}{4} \cdot(\sqrt{2})^{4}+\ldots+\binom{2 n}{2 n} \cdot(\sqrt{2})^{2 n}\right)= \\
2\left(1+\binom{2 n}{2} \cdot 2+\binom{2 n}{4} \cdot 2^{2}+\ldots+\binom{2 n}{2 n} \cdot 2^{n}\right)
\end{gathered}
$$

It is integer even. Let us mark it as $2 A$. Then,

$$
(\sqrt{2}+1)^{2 n}=2 A-(\sqrt{2}-1)^{2 n}=(2 A-1)+\left(1-(\sqrt{2}-1)^{2 n}\right)
$$

Hence, $(1+\sqrt{2})^{2 n}$ equals a sum of integer $2 A-1$ and $1-(\sqrt{2}-1)^{2 n}$. The last term satisfies the inequalities $0<1-(\sqrt{2}-1)^{2 n}<1$. Consequently,

$$
\left\{(\sqrt{2}+1)^{2 n}\right\}=1-(\sqrt{2}-1)^{2 n}
$$

As $0<\sqrt{2}-1<1$, one has

$$
\lim _{n \rightarrow \infty}(\sqrt{2}-1)^{2 n}=0
$$

Consequently,

$$
\lim _{n \rightarrow \infty}\left\{(\sqrt{2}+1)^{2 n}\right\}=\lim _{n \rightarrow \infty}\left(1-(\sqrt{2}-1)^{2 n}\right)=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty}(\sqrt{2}-1)^{2 n}=1
$$

Thus, there is a violation of the necessary condition of convergence for the series. The series diverges.
5. Find the maximal set of points in \mathbb{C} such that there are no complex Hermitian positively definite matrices of identical sizes A, B for which the point is an eigenvalue of matrix $(A+B)^{-1}(I+A B)$.

Solution. Let c be an eigenvalue of the operator in question, i.e. $(A+$ $B)^{-1}(I+A B) x=c x$ for some non-zero vector x and some complex number c. Then,

$$
\begin{equation*}
x+A B x=c(A x+B x) \tag{1}
\end{equation*}
$$

Mark $B x=y$. Hence, $(y, x)>0$, and it is the only condition for x, y. Equation (1) is rewritten in the form $A(y-c x)=c y-x$. Moreover, $(c y-x, y-c x)>0$ due to the fact that A be positively definite. It is also possible that $y=c x$, $c y=x$. this takes place for $x=y, c=1$. Let us introduce a notation $c=a+b \imath$. Then,

$$
a((x, x)+(y, y))+b \imath((y, y)-(x, x))-\left(1+a^{2}+b^{2}\right)(x, y)>0
$$

Consequently, $a>0$, and for any $a>0$ and any b, one can find matrices and "almost orthogonal"vectors x, y of identical lengths such that the inequality takes place.

Answer. Left half-plane.
6. Let f be continuous non-negative 2π-periodic function, $0 \leq r<1$. Prove, that

$$
\int_{-\pi}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos t} f(t) d t \leq 2 \frac{\left(1-r^{2}\right)+\pi^{2}}{1+r} \int_{0}^{\infty} \frac{(1-r) s}{\left((1-r)^{2}+s^{2}\right)^{2}}\left(\int_{-s}^{s} f(t) d t\right) d s
$$

Solution. Lemma. For $0 \leq r<1,0 \leq t \leq \pi$, one has

$$
\begin{gathered}
\frac{(1-r)^{2}}{1+r^{2}-2 r \cos t} \leq \frac{1-r}{(1-r)^{2}+t^{2}} \frac{(1-r)^{2}+\pi^{2}}{1+r} \\
A=\frac{1-r^{2}}{1+r^{2}-2 r \cos t}=\frac{(1-r)(1+r)}{(1-r)^{2}+4 r \sin ^{2} \frac{t}{2}}=\frac{(1-r)(1+r)}{(1-r)^{2}+t^{2}} \frac{(1-r)^{2}+t^{2}}{(1-r)^{2}+4 r \sin ^{2} \frac{t}{2}}
\end{gathered}
$$

For $0 \leq t \leq \pi$ one has $\sin \frac{t}{2} \geq \frac{t}{\pi}$. Correspondingly,

$$
A \leq \frac{(1-r)(1+r)}{(1-r)^{2}+t^{2}} \frac{(1-r)^{2}+t^{2}}{(1-r)^{2}+\frac{4 r}{\pi^{2}} t^{2}}
$$

It is simple to show that for $0 \leq r<1,0 \leq t \leq \pi$, the following inequality takes place:

$$
B=\frac{(1-r)^{2}+t^{2}}{(1-r)^{2}+\frac{4 r}{\pi^{2}} t^{2}} \leq \frac{(1-r)^{2}+\pi^{2}}{(1+r)^{2}}
$$

Really, for $r=0$, it is evident. Let $0<r<1$

$$
B=\frac{\pi^{2}}{4 r}\left(1-\frac{(1-r)^{2}\left(\frac{\pi^{2}}{4 r}-1\right)}{\frac{\pi^{2}}{4 r}(1-r)^{2}+t^{2}}\right) \leq \frac{\pi^{2}}{4 r}\left(1-\frac{(1-r)^{2}\left(\frac{\pi^{2}}{4 r}-1\right)}{\frac{\pi^{2}}{4 r}(1-r)^{2}+\pi^{2}}\right)=\frac{(1-r)^{2}+\pi^{2}}{(1+r)^{2}}
$$

Here we use the fact, that $\frac{\pi^{2}}{4 r}>1$. The Lemma is proved.
Due to the Lemma,

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos t} f(t) d t=\int_{0}^{\pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos t}(f(t)+f(-t)) d t \\
& \leq k \int_{0}^{\pi} \frac{u}{u^{2}+t^{2}}(f(t)+f(-t)) d t \leq k \int_{0}^{\infty} \frac{u}{u^{2}+t^{2}}(f(t)-f(-t)) d t
\end{aligned}
$$

Here $u=1-r, k=\frac{(1-r)^{2}+\pi^{2}}{1+r}$. We used the continuity and, correspondingly, boundedness of 2π-periodic function f. Hence, the integral converges. The last integral equals

$$
\begin{gathered}
k \int_{0}^{\infty}(f(t)+f(-t)) \int_{t}^{\infty} \frac{2 u s}{\left(u^{2}+s^{2}\right)^{2}} d s d t=k \int_{0}^{\infty} \frac{2 u s}{\left(u^{2}+s^{2}\right)^{2}} \int_{0}^{s}(f(t)+f(-t)) d t d s \\
=2 k \int_{0}^{\infty} \frac{u s}{\left(u^{2}+s^{2}\right)^{2}}\left(\int_{-s}^{s} f(t) d t\right) d s
\end{gathered}
$$

Here we changed the order of integration. As a result, we come to an expression of the required form.
7. Let (A, B, C, D) be a quadraple of four real numbers for which $A B, C D, A D, B C$ are not integers. Determine the convergence of the series

$$
\sum_{m=0}^{\infty} m \frac{\binom{A B}{m}\binom{C D}{m}}{\binom{A D-1}{m}\binom{B C-1}{m}}
$$

and evaluate its sum when it converges. Here

$$
\binom{z}{m}=\frac{\Gamma(z+1)}{\Gamma(m+1) \Gamma(z-m+1)},
$$

Γ is the Euler gamma-function.
Solution. Denote $z=A B, x=-A D, y=-B C$, then $C D=-x y / z$ and we have

$$
m \frac{\binom{z}{m}\binom{x y / z}{m}}{\binom{-x-1}{m}\binom{-y-1}{m}}=h(m-1)-h(m)
$$

where

$$
h(m)=\frac{z(m+x+1)(m+y+1)}{(z+x)(z+y)} \cdot \frac{\binom{z}{m+1}\binom{x y / z}{m+1}}{\binom{-x-1}{m+1}\binom{-y-1}{m+1}} .
$$

So, the partial sum of our series equals $h(0)-h(n)$, and the question reduces to finding the limit of $h(n)$ (when it exists). It is straightforward to check that $h(m) / h(m-1)$ behaves like $1-((z+x)(z+y) / z) m^{-1}+O\left(m^{-2}\right)$ and so $h(n)$ tends to 0 when $(z+x)(z+y) / z>0$, i.e., $(B-D)(A-C)>0, h(n)$ tends to infinity when $(B-D)(A-C)<0$. Really,

$$
\begin{gathered}
h(m) \sim h(m-1)\left(1-\frac{a}{m}\right) \sim h(m-2)\left(1-\frac{a}{m}\right)\left(1-\frac{a}{m-1}\right) \sim \ldots \sim \\
h(0)\left(1-\frac{a}{m}\right)\left(1-\frac{a}{m-1}\right) \ldots(1-a) .
\end{gathered}
$$

Correspondingly,

$$
\begin{equation*}
\ln h(m) \sim \ln h(0)+\ln \left(1-\frac{a}{m}\right)+\ldots+\ln (1-a) \tag{2}
\end{equation*}
$$

All terms in (2) (besides the first one) have the same sign (negative for $a>0$ and positive for $a<0$). To consider the convergence of the series with the partial sum (2), one can use the Gauss theorem.

$$
\frac{\left|\ln \left(1-\frac{a}{m}\right)\right|}{\left|\ln \left(1-\frac{a}{m-1}\right)\right|} \sim \frac{|a / m|}{|a /(m-1)|}=1-\frac{1}{m} .
$$

It means that the series with the partial sum (2) diverges to $-\infty$ if $a>0$ (correspondingly, $h(m) \rightarrow 0$) or to $+\infty$ if $a<0$ (correspondingly, $h(m) \rightarrow \infty$).

It is easy to see that the initial series diverges as a harmonic series when $B=D$ or $A=C$. Thus, the series converges to $h(0)=z x y /(z+x)(z+y)=$ $A B C D /(A-C)(B-D)$ when $(B-D)(A-C)>0$ and diverges otherwise.

