
Problems and solutions for NCUMC 2017. 23.04.2017
1. Do three vectors ~a,~b,~c in R3 exist such that the following three inequalities

take place simultaneously:
√

3|~a| < |~b− ~c|,
√

3|~b| < |~c− ~a|,
√

3|~c| < |~a−~b|?

Solution. Let us find squares of each inequality and summarize all the
inequalities. One gets

3(~a2 +~b2 + ~c2) < 2(~a2 +~b2 + ~c2)− 2(~a ·~b+~b · ~c+ ~c · ~a).

Hence, one comes to incorrect inequality

(~a+~b+ ~c)2 < 0.

It means that such triplet of vectors does not exist.
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2. Find all non-zero functions f : C→ C satisfying the equality f(x)f(y) =
f(x+ eity) for fixed t ∈ (0, π). and any x, y ∈ C

Answer. f(x) = 1 for all x ∈ C.
Solution. First we’ll show that f(x) 6= 0 for all x ∈ C. If instead there would

be z such that f(z) = 0, then f(x) = f(x − εz + εz) = f(x − εz) f(z) = 0
(ε = eit) for all x ∈ C which contradicts to the non-nullity of f .

Now, putting y = 1
1−εx (as ε 6= 1) gives f(x)f(y) = f(x + εy) = f(y). Due

to f(y) 6= 0, one has f(x) = 1 for all x ∈ C.
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3. Find the product of all solutions to the equation

2017∑
k=1

1

z − εk
= 0 ,

where εk = eıkπ/1009 are different zeros of the polynomial z2018 − 1.

Solution. We show it for a general case, i. e. for

n−1∑
k=1

1

z − εk
= 0 ,

where εk are different zeros of the polynomial zn − 1.

Let us denote P (z) =
n−1∏
k=1

(z − εk) = zn−1
z−1 . Then

n−1∑
k=1

1

z − εk
=

n−1∑
k=1

∏
j 6=k

(z − εj)∏
k 6=0

(z − εk)
=
P ′(z)

P (z)
.

Hence the solution to the given equation is the solution to 0 = P ′(z) = (n−1)zn−nzn−1+1
(z−1)2 ,

and vice-versa. So the all solutions in question are zeros of the polynomial
(n−1)zn−nzn−1+1 without two 1-s (which are the zeros of the denominator). By
Vieta’s formula the requested product (multiplied by 12) is equal to (−1)n 1

n−1 .

In our case n = 2018, so the answer is 1
2017 .
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4. Does the following series converge
∑∞
n=1{(

√
2+1)2n} ? Here {a} = a− [a],

[a] is the maximal integer less or equal a.
Answer. The series diverges.
Solution. Consider the behavior of the series term. Binomial formula leads

to the following two expressions:

(1+
√

2)2n = 1+

(
2n

1

)
·
√

2+

(
2n

2

)
· (
√

2)2 +

(
2n

3

)
· (
√

2)3 + ...+

(
2n

2n

)
· (
√

2)2n,

(1−
√

2)2n = 1−
(

2n

1

)
·
√

2+

(
2n

2

)
· (
√

2)2−
(

2n

3

)
· (
√

2)3 + ...+

(
2n

2n

)
· (
√

2)2n.

By summarizing of these two equalities, one obtains

(1+
√

2)2n+(1−
√

2)2n = 2(1+

(
2n

2

)
·(
√

2)2+

(
2n

4

)
·(
√

2)4+...+

(
2n

2n

)
·(
√

2)2n) =

2(1 +

(
2n

2

)
· 2 +

(
2n

4

)
· 22 + ...+

(
2n

2n

)
· 2n).

It is integer even. Let us mark it as 2A. Then,

(
√

2 + 1)2n = 2A− (
√

2− 1)2n = (2A− 1) + (1− (
√

2− 1)2n).

Hence, (1 +
√

2)2n equals a sum of integer 2A− 1 and 1− (
√

2− 1)2n. The last
term satisfies the inequalities 0 < 1− (

√
2− 1)2n < 1. Consequently,

{(
√

2 + 1)2n} = 1− (
√

2− 1)2n.

As 0 <
√

2− 1 < 1, one has

lim
n→∞

(
√

2− 1)2n = 0.

Consequently,

lim
n→∞

{(
√

2 + 1)2n} = lim
n→∞

(1− (
√

2− 1)2n) = lim
n→∞

1− lim
n→∞

(
√

2− 1)2n = 1.

Thus, there is a violation of the necessary condition of convergence for the series.
The series diverges.
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5. Find the maximal set of points in C such that there are no complex
Hermitian positively definite matrices of identical sizes A,B for which the point
is an eigenvalue of matrix (A+B)−1(I +AB).

Solution. Let c be an eigenvalue of the operator in question, i.e. (A +
B)−1(I + AB)x = cx for some non-zero vector x and some complex number c.
Then,

x+ABx = c(Ax+Bx). (1)

Mark Bx = y. Hence, (y, x) > 0, and it is the only condition for x, y. Equation
(1) is rewritten in the form A(y − cx) = cy − x. Moreover, (cy − x, y − cx) > 0
due to the fact that A be positively definite. It is also possible that y = cx,
cy = x. this takes place for x = y, c = 1. Let us introduce a notation c = a+ bı.
Then,

a((x, x) + (y, y)) + bı((y, y)− (x, x))− (1 + a2 + b2)(x, y) > 0.

Consequently, a > 0, and for any a > 0 and any b, one can find matrices and
"almost orthogonal"vectors x, y of identical lengths such that the inequality
takes place.

Answer. Left half-plane.
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6. Let f be continuous non-negative 2π-periodic function, 0 ≤ r < 1. Prove,
that∫ π

−π

1− r2

1 + r2 − 2r cos t
f(t)dt ≤ 2

(1− r2) + π2

1 + r

∫ ∞
0

(1− r)s
((1− r)2 + s2)2

(

∫ s

−s
f(t)dt)ds

Solution. Lemma. For 0 ≤ r < 1, 0 ≤ t ≤ π, one has

(1− r)2

1 + r2 − 2r cos t
≤ 1− r

(1− r)2 + t2
(1− r)2 + π2

1 + r

A =
1− r2

1 + r2 − 2r cos t
=

(1− r)(1 + r)

(1− r)2 + 4r sin2 t
2

=
(1− r)(1 + r)

(1− r)2 + t2
(1− r)2 + t2

(1− r)2 + 4r sin2 t
2

For 0 ≤ t ≤ π one has sin t
2 ≥

t
π . Correspondingly,

A ≤ (1− r)(1 + r)

(1− r)2 + t2
(1− r)2 + t2

(1− r)2 + 4r
π2 t2

It is simple to show that for 0 ≤ r < 1, 0 ≤ t ≤ π, the following inequality
takes place:

B =
(1− r)2 + t2

(1− r)2 + 4r
π2 t2

≤ (1− r)2 + π2

(1 + r)2

Really, for r = 0, it is evident. Let 0 < r < 1

B =
π2

4r
(1−

(1− r)2(π
2

4r − 1)
π2

4r (1− r)2 + t2
) ≤ π2

4r
(1−

(1− r)2(π
2

4r − 1)
π2

4r (1− r)2 + π2
) =

(1− r)2 + π2

(1 + r)2

Here we use the fact, that π2

4r > 1. The Lemma is proved.
Due to the Lemma,∫ π

−π

1− r2

1 + r2 − 2r cos t
f(t)dt =

∫ π

0

1− r2

1 + r2 − 2r cos t
(f(t) + f(−t))dt

≤ k
∫ π

0

u

u2 + t2
(f(t) + f(−t))dt ≤ k

∫ ∞
0

u

u2 + t2
(f(t)− f(−t))dt

Here u = 1− r, k = (1−r)2+π2

1+r . We used the continuity and, correspondingly,
boundedness of 2π-periodic function f . Hence, the integral converges. The last
integral equals

k

∫ ∞
0

(f(t)+f(−t))
∫ ∞
t

2us

(u2 + s2)2
dsdt = k

∫ ∞
0

2us

(u2 + s2)2

∫ s

0

(f(t)+f(−t))dtds

= 2k

∫ ∞
0

us

(u2 + s2)2
(

∫ s

−s
f(t)dt)ds

Here we changed the order of integration. As a result, we come to an expression
of the required form.
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7. Let (A,B,C,D) be a quadraple of four real numbers for whichAB,CD,AD,BC
are not integers. Determine the convergence of the series

∞∑
m=0

m

(
AB
m

)(
CD
m

)(
AD−1
m

)(
BC−1
m

)
and evaluate its sum when it converges. Here(

z

m

)
=

Γ(z + 1)

Γ(m+ 1)Γ(z −m+ 1)
,

Γ is the Euler gamma-function.
Solution. Denote z = AB, x = −AD, y = −BC, then CD = −xy/z and

we have

m

(
z
m

)(
xy/z
m

)(−x−1
m

)(−y−1
m

) = h(m− 1)− h(m),

where

h(m) =
z(m+ x+ 1)(m+ y + 1)

(z + x)(z + y)
·
(

z
m+1

)(
xy/z
m+1

)(−x−1
m+1

)(−y−1
m+1

) .
So, the partial sum of our series equals h(0) − h(n), and the question reduces
to finding the limit of h(n) (when it exists). It is straightforward to check that
h(m)/h(m− 1) behaves like 1− ((z + x)(z + y)/z)m−1 + O(m−2) and so h(n)
tends to 0 when (z + x)(z + y)/z > 0, i.e., (B −D)(A− C) > 0, h(n) tends to
infinity when (B −D)(A− C) < 0. Really,

h(m) ∼ h(m− 1)(1− a

m
) ∼ h(m− 2)(1− a

m
)(1− a

m− 1
) ∼ ... ∼

h(0)(1− a

m
)(1− a

m− 1
)...(1− a).

Correspondingly,

lnh(m) ∼ lnh(0) + ln(1− a

m
) + ...+ ln(1− a). (2)

All terms in (2) (besides the first one) have the same sign (negative for a > 0
and positive for a < 0). To consider the convergence of the series with the partial
sum (2),one can use the Gauss theorem.

| ln(1− a
m )|

| ln(1− a
m−1 )|

∼ |a/m|
|a/(m− 1)|

= 1− 1

m
.

It means that the series with the partial sum (2) diverges to −∞ if a > 0
(correspondingly, h(m)→ 0) or to +∞ if a < 0 (correspondingly, h(m)→∞).

It is easy to see that the initial series diverges as a harmonic series when
B = D or A = C. Thus, the series converges to h(0) = zxy/(z + x)(z + y) =
ABCD/(A− C)(B −D) when (B −D)(A− C) > 0 and diverges otherwise.
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