Problems for NCUMC 2018. 22.04.2018

Problem 1. Any nonnegative polynomial of two real variables reaches its infimum at some point. Is this statement correct?

Problem 2. Let

$$
\cos A:=I-\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}-\frac{1}{6!} A^{6}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} A^{2 n}
$$

for any square matrix A, where I is the identity matrix. Does there exist a 2×2 square matrix M such that

$$
\cos M=\left(\begin{array}{cc}
0 & 2018 \\
0 & 0
\end{array}\right) ?
$$

Problem 3. Let y be real n times continuously differentiable function vanishing outside some finite interval belonging to $(0, \infty)$. Prove the inequality:

$$
\int_{0}^{\infty} \frac{y^{2}}{x^{2 n}} d x \leq \frac{2^{2 n}}{((2 n-1)!!)^{2}} \int_{0}^{\infty}\left(y^{(n)}\right)^{2} d x
$$

Problem 4. Find all functions $f \in C^{2}\left(\mathbb{R}_{+}\right)$such that for any $a \geq 0$:

$$
\int_{0}^{a} d x \int_{0}^{x} f\left(\frac{a y}{x}\right) d y=\frac{a}{4}\left(f(a)+f^{\prime}(a)\right), \quad f(0)=1
$$

Problem 5. Let us consider the set of real orthogonal matrices $O(n, \mathbb{R})$ as a subset of an euclidean space $\mathbb{R}^{n^{2}}$. It is known that $O(n, \mathbb{R})$ has two components, O_{+}contained matrices of determinant equal to 1 , and O_{-}of those which determinant is equal to -1 . Compute the euclidean distance between O_{+}and O_{-}.
Remark: The euclidean distance of two matrices $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$ is equal to $\operatorname{dist}(A, B)=\sqrt{\sum_{i, j}\left|a_{i, j}-b_{i, j}\right|^{2}}$.

Problem 6. Let F be locally integrable 2π-periodic function such that

$$
\|F\|_{*}=\sup _{I} \frac{1}{|I|} \int_{I}\left|F(t)-F_{I}\right| d t<\infty .
$$

Here $F_{I}=\frac{1}{|I|} \int_{I} F(t) d t,|I|$ is the length of interval I. Consider two intervals I and J with the same middle point, $I \subset J$. Prove that

$$
\left|F_{I}-F_{J}\right| \leq 2\left(\log _{2} \frac{|J|}{|I|}+1\right)\|F\|_{*}
$$

Problem 7. For which natural n the equation

$$
y^{(n)}(x)=y^{2}(x)
$$

has a positive solution defined on a semi-axis $(a,+\infty)$ for some a ?

