
Problems and solutions for NCUMC 2018. 22.04.2018
Problem 1. Any nonnegative polynomial of two real variables reaches its

infimum at some point. Is this statement correct?
Solution. No. Example P (x, y) = x2 + (xy − 1)2.
inf(x2 + (xy − 1)2) = 0. Really, one can consider point at the curve xy = 1

for y →∞ ⇒ P ( 1
y , y)→ 0. From the other hand, P (x, y) 6= 0 everywhere.
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Problem 2. Let

cosA := I − 1

2!
A2 +

1

4!
A4 − 1

6!
A6 + · · · =

∞∑
n=0

(−1)n

(2n)!
A2n ,

for any square matrix A, where I is the identity matrix. Does there exist a 2×2
square matrix M such that

cosM =

(
0 2018
0 0

)
?

Solution. The answer is positive. For instance

cos

·π2 −2018

0 ·π
2

 =

(
0 2018
0 0

)
.

To prove it, we should note that(
ω 1
0 ω

)n
=

(
ωn nωn−1

0 ωn

)
for n = 0, 1, . . . . Hence

cos
(
β

(
ω 1
0 ω

) )
=

(
cos(βω) −β sin(βω)

0 cos(βω)

)
So it is enough to find β and ω such that cos(βω) = 0 and −β sin(βω) =

2018, for instance β = −2018 and βω = π
2 .
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Problem 3. Let y be real n times continuously differentiable function vanishing
outside some finite interval belonging to (0,∞). Prove the inequality:∫ ∞

0

y2

x2n
dx ≤ 22n

((2n− 1)!!)2

∫ ∞
0

(y(n))2dx.

Solution. Let us present the integral in the left hand side of the inequality
in the following form:

I =

∫ ∞
0

y2

x2n
dx = 2

∫ ∞
0

x−2ndx

∫ x

0

y(t)y′(t)dt =

2

∫ ∞
0

y(t)y′(t)dt

∫ ∞
1

x−2ndx =
2

2n− 1

∫ ∞
0

t1−2ny(t)y′(t)dt.

Due to Cauchy inequality, one has∫ ∞
0

y2

x2n
dx ≤ 2

2n− 1

(∫ ∞
0

y2

x2n
dx

) 1
2
(∫ ∞

0

(y′)2

x2−2n
dx

) 1
2

.

Correspondingly, ∫ ∞
0

y2

x2n
dx ≤ 22

(2n− 1)2

∫ ∞
0

(y′)2

x2n−2
dx.

Let us repeat the procedure for the integral in the right hand side, and then
repeat again and again, totally, n times. As a result, we come to the desired
inequality.
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Problem 4. Find all functions f ∈ C2(R+) such that for any a ≥ 0:∫ a

0

dx

∫ x

0

f(
ay

x
)dy =

a

4
(f(a) + f ′(a)), f(0) = 1.

Solution.

I(a) =

∫ π
4

0

f(a tanϕ)dϕ

∫ a
cosϕ

0

rdr =
1

2

∫ π
4

0

f(a tanϕ)(cosϕ)−2dϕ = |t = a tanϕ| =

=
a

2

∫ a

0

f(t)dt =
a

4
(f(a) + f ′(a));∫ a

0

f(t)dt =
1

2
(f(a) + f ′(a)), f(0) = 1⇒ f ′(0) = −1

f(a) =
1

2
(f ′(a) + f”(a)), f(0) = 1, f ′(0) = −1

f(a) = Aex +Be−2x

Due to the initial conditions, one has

A+B = 1, A− 2B = −1,

A =
1

3
, B =

2

3
.

Simple substitution shows that f(x) = 1
3e
x+ 2

3e
−2x satisfies the proper relation.

Answer: f(x) = 1
3e
x + 2

3e
−2x.

4



Problem 5. Let us consider the set of real orthogonal matrices O(n,R) as a
subset of an euclidean space Rn2

. It is known that O(n,R) has two components,
O+ contained matrices of determinant equal to 1, and O− of those which
determinant is equal to −1. Compute the euclidean distance between O+ and
O−.
Remark: The euclidean distance of two matrices A = (ai,j) and B = (bi,j) is
equal to dist(A,B) =

√∑
i,j

|ai,j − bi,j |2 .

Solution. The euclidean distance between any two matrices A = (aij) and
B = (bij) is equal to

dist(A,B) =
( n∑
i=1

n∑
j=1

(aij − bij)2
)1/2

=
(
Tr
(
(A−B)T (A−B)

))1/2
,

where XT is the transpose of a matrix X. It is induced by the Frobenius norm
‖A‖ =

√
Tr(ATA) . Moreover, for orthogonal matrices A and B we have

Tr
(
(A−B)T (A−B)

)
= Tr(ATA−ATB−BTA+BTB) = 2n−Tr

(
ATB+(ATB)T

)
as ATA = BTB = I, ie. the identity matrix. If A ∈ O+ and B ∈ O−, then
det(ATB) = det(A) det(B) = −1. So ATB ∈ O−. Of course I ∈ O+. Hence

dist(O+, O−)2 = min
A∈O+&B∈O−

Tr
(
(A−B)T (A−B)

)
= 2n− max

X∈O−
Tr(X +XT ) .

Any orthogonal matrix X can be brought to the canonical form UTΛU ,
where

Λ =



V1
. . . 0

Vk
±1

0
. . .

±1


and Vi are 2×2 rotation matrices (with conjugate eigenvalues). So

max
X∈O−

Tr(X +XT ) = max∏
λj=−1

2

n∑
k=1

Reλk = 2(n− 2) .

Finally, we get dist(O+, O−)2 = 2n− 2(n− 2) = 4, that is dist(O+, O−) = 2 .
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Problem 6. Let F be locally integrable 2π−periodic function such that

‖F‖∗ = sup
I

1

|I|

∫
I

|F (t)− FI |dt <∞.

Here FI = 1
|I|
∫
I
F (t)dt, |I| is the length of interval I. Consider two intervals I

and J with the same middle point, I ⊂ J . Prove that

|FI − FJ | ≤ 2

(
log2

|J |
|I|

+ 1

)
‖F‖∗. (1)

Solution. First, consider the case when |I| < |J | ≤ 2|I|. Then,

|FI − FJ | =
1

|I|

∣∣∣∣∫
I

(F (t)− FJ)dt

∣∣∣∣ ≤
1

|I|

∫
I

|(F (t)− FJ)| dt ≤ 2

|J |

∫
I

|(F (t)− FJ)| dt ≤ 2‖F‖∗.

Hence, for the first case inequality (1) is valid. Here we used only that I ⊂ J
and |I| < |J | ≤ 2|I|.

We will prove the general statement by induction. Let 2n|I| < |J | ≤ 2n+1|I|
and the statement have been proved for intervals J ′ such that |I| < |J ′| ≤ 2|I|.
Let us take as J ′ the interval with the same middle point and with two times
smaller length. Then, I ⊂ J ′ ⊂ J . Due to the induction hypothesis,

|FI − FJ′ | ≤ 2

(
log2

|J ′|
|I|

+ 1

)
‖F‖∗.

As |J | = 2|J ′| and the induction base, |FI − FJ′ | ≤ 2‖F‖∗. Consequently,

|FI − FJ | ≤ |FI − FJ′ |+ |FJ − FJ′ | ≤

2‖F‖∗ + 2‖F‖∗ +

(
log2

|J ′|
|I|

+ 1

)
=

2‖F‖∗
(

log2

|J |
|I|

+ 1

)
.

Hence, the statement is valid for 2n‖I‖ < ‖J‖ < 2n+1. This finishes the proof
(by induction).
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Problem 7. For which natural n the equation

y(n)(x) = y2(x) (1)

has a positive solution defined on a semi-axis (a,+∞) for some a?
Solution.
1. For even n such a solution can be defined explicitly:

y(x) = Cx−n, where C = n(n+ 1)(n+ 2)...(2n− 1), x ∈ (0,+∞).

2. Suppose n is odd and y(x) is a positive solution to Eq. (1) defined on
a semi-axis (a,+∞). According to Eq. (1) the function y(n)(x) is also positive
and makes the function y(n−1)(x) to strictly increase and therefore to have an
eventually constant non-zero sign.

Similarly we obtain eventual strict monotony and non-zero constant sign for
y(n−2)(x), . . . , y′(x), y(x). Thus, all y(x), y′(x), . . . , y(n)(x) have finite or infinite
limits as x→ +∞.

If all these limits equal zero, then the positive and eventually monotone
function y(x) must eventually decrease. Hence y′(x) is eventually negative and
tends to zero eventually increasing. By the same arguments, all derivatives
y(j)(x), j = 0, . . . , n, are eventually positive for even j and negative for odd
ones. This contradicts Eq. (1) with odd n.

So, at least one of the above limits, say lim
x→+∞

y(j)(x), is non-zero. Hence, all

derivatives of lower order also have non-zero limits. This holds for y(x) itself,
which must have a positive limit, and, according to Eq. (1), for y(n)(x), too.
Thus, all y(j)(x), j = 0, . . . , n, must tend to +∞ providing the existence of a
point b > a such that y(j)(b) > 1 for all j = 0, . . . , n.

Note that the function z(x) = C(−x)−n with the above constant C is a
solution to Eq. (1) on (−∞, 0) regardless of odd or even n. Since all derivatives
z(j)(x), j = 0, . . . , n, tend to zero as x→ −∞, there exists a point −c < 0 such
that z(j)(−c) < 1 for all j = 0, . . . , n.

The function u(x) = z(x − b − c), x ∈ (−∞, b + c), is also a solution to
Eq. (1) and satisfies the conditions u(j)(b) < 1 < y(j)(b) for all j = 0, . . . , n.

Now we prove the inequalities y(j)(x) > u(j)(x) for all x ∈ (b, b + c) and
j = 0, . . . , n − 1. Suppose s ∈ (b, b + c) is the most left of the points where at
least one of the above inequalities does not hold, say, y(j)(s) = u(j)(s).

According to this selection, the inequality y(j+1)(x) > u(j+1)(x) holds for all
x ∈ [b, s). (This inequality holds for j = n − 1 as well since y(n)(x) = y(x)2 >
u(x)2 = u(n)(x) whenever b ≤ x < s.) Integrating this inequality over [b, s] we
obtain y(j)(s) > u(j)(s) in contradiction with s selected.

So, y(x) > u(x) whenever x ∈ [b, b+ c). Since u(x)→ +∞ as x→ b+ c, the
solution y(x) cannot be defined on (a,+∞) ⊃ [b, b+ c).
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