NCUMC-2014. Problems

1.Can one find real functions $f, g \in C^{1}(-1,1)$ such that

$$\begin{vmatrix} \int_{-1}^{1} f^{2} dx & \int_{-1}^{1} f g dx \\ \int_{-1}^{1} f g dx & \int_{-1}^{1} g^{2} dx \end{vmatrix} \neq 0, \quad \begin{vmatrix} f & g \\ f' & g' \end{vmatrix} \equiv 0?$$

2. Sequences $\{a_n\}$, $\{b_n\}$ are not convergent, but sequences $\{a_n + b_n\}$, $\{a_nb_n\}$ are convergent. Prove that the sequences $\{a_n\}$, $\{b_n\}$ have identical sets of condensation points (partial limits), and the set consists of two points.

3. Given positive integers *m* and *n*. Consider all $n \times m$ real matrices of rank at most 2 without zero entries. For any such matrix *A* consider an $n \times m$ sign matrix defined by $A'_{i,j} = sign(A_{i,j})$ (where sign(x) = x/|x| for non-zero real *x*). Prove that the number of different sign matrices does not exceed $(m+n)^{m+n}$.

4. Find all functions $f(x): (0,\infty) \rightarrow (0,\infty)$ satisfying

$$\frac{1}{1+x+f(y)} + \frac{1}{1+y+f(z)} + \frac{1}{1+z+f(x)} = 1$$

whenever x, y, z are positive numbers and xyz = 1.

5. Given positive integers *n*. The polynomial f(x) of degree 2n-1 is so that $f - f^2$ is divisible by $x^n(1-x)^n$. Find all possible values of the leading coefficient of *f*.

6. Prove that there exists integer r such that hundred of initial digits of the number e^r coincide with the hundred of initial digits of the number π .

7. Let q(x) be continuous bounded from below, i.e. there exists constant c > 0 such that q(x) > -c for all x, and $\lim_{x \to \infty} \int_{x}^{x+\omega} q(x) dx = \infty$ for any $\omega > 0$. Prove that for any fixed λ any non-

trivial solution of the equation $y'' + \lambda - q(x) \quad y = 0$ has finite number of roots at $(0, \infty)$.