NCUMC-2014. Problems

1.Can one find real functions $f, g \in C^{1}(-1,1)$ such that

$$
\left|\begin{array}{ll}
\int_{-1}^{1} f^{2} d x & \int_{-1}^{1} f g d x \\
\int_{-1}^{1} f g d x & \int_{-1}^{1} g^{2} d x
\end{array}\right| \neq 0, \quad\left|\begin{array}{ll}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right| \equiv 0 ?
$$

2. Sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are not convergent, but sequences $\left\{a_{n}+b_{n}\right\}$, $\left\{a_{n} b_{n}\right\}$ are convergent. Prove that the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ have identical sets of condensation points (partial limits), and the set consists of two points.
3. Given positive integers m and n. Consider all $n \times m$ real matrices of rank at most 2 without zero entries. For any such matrix A consider an $n \times m$ sign matrix defined by $A_{i, j}^{\prime}=\operatorname{sign}\left(A_{i, j}\right)$ (where $\operatorname{sign}(x)=x /|x|$ for non-zero real x). Prove that the number of different sign matrices does not exceed $(m+n)^{m+n}$.
4. Find all functions $f(x):(0, \infty) \rightarrow(0, \infty)$ satisfying

$$
\frac{1}{1+x+f(y)}+\frac{1}{1+y+f(z)}+\frac{1}{1+z+f(x)}=1
$$

whenever x, y, z are positive numbers and $x y z=1$.
5. Given positive integers n. The polynomial $f(x)$ of degree $2 n-1$ is so that $f-f^{2}$ is divisible by $x^{n}(1-x)^{n}$. Find all possible values of the leading coefficient of f.
6. Prove that there exists integer r such that hundred of initial digits of the number e^{r} coincide with the hundred of initial digits of the number π.
7. Let $q(x)$ be continuous bounded from below, i.e. there exists constant $c>0$ such that $q(x)>-c$ for all x, and $\lim _{x \rightarrow \infty} \int_{x}^{x+\omega} q(x) d x=\infty$ for any $\omega>0$. Prove that for any fixed λ any nontrivial solution of the equation $y^{\prime \prime}+\lambda-q(x) \quad y=0$ has finite number of roots at $(0, \infty)$.

