
2nd NCUMC problems 21.04.2015 
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4. Prove inequality
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dx Ax
dt

  , where 

1 6 2
4 4 7 .
2 3 7

A
 
   
   

  

Prove that (t)t x  is an increasing function (R R  ). Here .  denotes the Euclidean 

norm. 

6. Let us say that a parallelepiped in 3R , with edges parallel to coordinate axes, is “semi-integer” 
if four of its edges, which are parallel to some coordinate axis, has an integer length. Let us 
compose a parallelepiped from finite number of semi-integer parallelepipeds (above mentioned 
axis and integer for different small parallelepipeds may be different). Prove that the composed 
parallelepiped is semi-integer. 

7. Let A  and B  be n n  Hermitian complex matrices such that the list of all non-zero 
eigenvalues  of A B  counted with respect to multiplicities, is exactly the concatenation of the 
corresponding lists of non-zero eigenvalues of  A  and B (possibly after reordering). Show that 

0AB   . 

 


