Problem 2. Sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are not convergent, but sequences $\left\{a_{n}+b_{n}\right\},\left\{a_{n} b_{n}\right\}$ are convergent. Prove that the sets of condensation points (partial limits) of the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are the same and consists of two points.
Solution. Let $\lim \left(a_{n}+b_{n}\right)=a$ and $\lim \left(a_{n} b_{n}\right)=b$. Subtracting $4 b$ from the square of a one obtains $\lim \left(a_{n}-b_{n}\right)^{2}=a^{2}-4 b$. It is clear that sequence $\left\{a_{n}-b_{n}\right\}$ is not convergent. In the opposite case it leads to the convergence of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ that is wrong. So, we obtain that $a^{2}-4 b>0$ and sequence $\left\{a_{n}-b_{n}\right\}$ has exactly two condensation points $\pm \sqrt{a^{2}-4 b}$. Taking into account that $\lim \left(a_{n}+b_{n}\right)=a$, one obtains that the condensation points for $\left\{a_{n}\right\}$ are $\left(a \pm \sqrt{a^{2}-4 b}\right) / 2$ and for $\quad\left\{b_{n}\right\}$ are $\left(a \mp \sqrt{a^{2}-4 b}\right) / 2$, i.e. the sets of the condensation points coincide.

