Problem 4. Find all functions $f(x):(0,+\infty) \rightarrow(0,+\infty)$ satisfying

$$
\frac{1}{1+x+f(y)}+\frac{1}{1+y+f(z)}+\frac{1}{1+z+f(x)}=1
$$

whenever x, y, z are positive numbers and $x y z=1$.
Solution. It is straightforward to ensure that $f(x)=1 / x$ satisfies this condition. Let's check that this the unique answer. Substitute $x=y=z=1$ and get $f(1)=1$. Substitute $z=1, x=t$, $y=1 / t$, where $t \neq 1$. Denoting $f(1 / t)=A, f(t)=B$ we get $\frac{1}{1+t+A}+\frac{1}{2+1 / t}+\frac{1}{2+B}=1$, or equivalently $A B(t+1)+A+B t^{2}=3 t+1$. Replacing t and $1 / t$ we get $A B(1 / t+1)+B+A / t^{2}=3 / t+1$, multiplying by t^{2} it transforms into $A B\left(t+t^{2}\right)+B t^{2}+A=3 t+t^{2}$, subtracting we get $A B\left(t^{2}-1\right)=t^{2}-1, A B=1$, next $A+t^{2} / A=A+B t^{2}=3 t+1-A B(t+1)=2 t$, hence $f(1 / t)=A=t$ for all t as desired.

