Problem 5. Given positive integer n. The polynomial $f(x)$ of degree $2 n-1$ is so that $f-f^{2}$ is divisible by $x^{n}(1-x)^{n}$. Find all possible values of the leading coefficient of f.

Solution. We have $f-f^{2}=f(1-f)$, multiples are coprime, so one of them is divisible by x^{n} and other by $(1-x)^{n}$ (if f or $1-f$ multiple is divisible by both x^{n} and $(1-x)^{n}$, degree of f may not be equal to $2 n-1$). Without loss of generality, x^{n} divides f and $(1-x)^{n}$ divides $1-f$, else replace f to $1-f$ (but take in mind that the leading coefficient changes sign.) Now such polynomial f is (at most) unique, as if g is another, there difference $f-g$ is divisible by $x^{n}(1-x)^{n}$ and so must vanish. Now we provide an explicit formula for f :

$$
f(x)=\frac{\int_{0}^{x} t^{n-1}(1-t)^{n-1} d t}{\int_{0}^{1} t^{n-1}(1-t)^{n-1} d t} .
$$

Indeed, $f(x)$ is clearly divisible by x^{n}, and relation $f(1-x)=1-f(x)$ shows that $f-1$ is divisible by $(1-x)^{n}$. It remains to calculate the leading coefficient of f. It equals $\frac{(-1)^{n-1}}{(2 n-1) I}$, where $I=\int_{0}^{1} t^{n-1}(1-t)^{n-1} d t=$ $B(n, n)=((n-1)!)^{2} /(2 n-1)!$. So, the final answer is $\pm\binom{ 2 n-2}{n-1}$.

