6. Let us say that a parallelepiped in R^{3}, with edges parallel to coordinate axes, is "semi-integer" if four of its edges, which are parallel to some coordinate axis, has an integer length. Let us compose a parallelepiped from finite number of semiinteger parallelepipeds (above mentioned axis and integer for different small parallelepipeds may be different). Prove that the composed parallelepiped is semiinteger.

Solution.

Lemma. Let $a_{1}<a_{2}$. Then the integral $\int_{a_{1}}^{a_{2}} e^{2 \pi i x} d x$ is zero if and only if $a_{2}-a_{1} \in \mathbb{Z}$.

Proof of the Lemma.

$$
\int_{a_{1}}^{a_{2}} e^{2 \pi i x} d x=\frac{1}{2 \pi i}\left(e^{2 \pi i a_{2}}-e^{2 \pi i a_{1}}\right)=\frac{e^{2 \pi i a_{1}}}{2 \pi i}\left(e^{2 \pi i\left(a_{2}-a_{1}\right)}-1\right)
$$

It gives the statement of the Lemma.
Let Q be the parallelepiped

$$
Q=\left\{(x, y, z): a_{1} \leq x \leq a_{2}, \mathrm{~b}_{1} \leq y \leq b_{2}, \mathrm{c}_{1} \leq z \leq c_{2}\right\}
$$

Consider

$$
I(Q)=\iiint_{Q} e^{2 \pi i(x+y+z)} d x d y d z=\int_{a_{1}}^{a_{2}} e^{2 \pi i x} d x \int_{b_{1}}^{b_{2}} e^{2 \pi i y} d y \int_{c_{1}}^{c_{2}} e^{2 \pi i z} d z
$$

In accordance with the Lemma $I(Q)=0$ if and only if at least one of the numbers $a_{2}-a_{1}, b_{2}-b_{1}, c_{2}-c_{1}$ is integer.

Let $Q=\bigcup_{j=1}^{m} Q_{j}$, where $Q_{j}, j=1,2, \ldots m$, are semi-integer. Then

$$
I(Q)=\sum_{j=1}^{m} I\left(Q_{j}\right)=\sum_{j=1}^{m} 0=0
$$

This means that Q is semi-integer.

