
6. Let us say that a parallelepiped in 3R , with edges parallel to coordinate axes, is 
“semi-integer” if four of its edges, which are parallel to some coordinate axis, has 
an integer length. Let us compose a parallelepiped from finite number of semi-
integer parallelepipeds (above mentioned axis and integer for different small 
parallelepipeds may be different). Prove that the composed parallelepiped is semi-
integer. 

Solution. 
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Proof of the Lemma.   
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It gives the statement of the Lemma. 

Let Q  be the parallelepiped 
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In accordance with the Lemma ( ) 0I Q    if and only if at least one of the numbers 

2 1 2 1 2 1, ,a a b b c c    is integer. 
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This means that Q  is semi-integer. 


