Problem 7. Let $q(x)$ is bounded from below, i.e. there exists constant $c>0$ such that $q(x)>-c$ for all x, and $\lim _{x \rightarrow \infty} \int_{x}^{x+\infty} q(x) d x=\infty$ for any $\omega>0$. Prove that for any fixed λ any non-trivial solution of the equation $y^{\prime \prime}+\lambda-q(x) \quad y=0$ has finite number of roots at $(0, \infty)$.

Solution. One can see that adding of a constant does not change the situation. Hence, it is sufficient to consider the case $q(x) \geq 0$. Let there exist $\lambda=\lambda_{0}>0$ such that there is a solution $y=y(x)$ of the equation $y^{\prime \prime}+\lambda-q(x) y=0$ having infinite number of roots $\alpha_{1}<\alpha_{2}<\alpha_{3}<\ldots<\alpha_{n}<\ldots$ Evidently that for $\lambda=\lambda_{0}<0$ it is not possible due to the sign of $\left.y^{\prime \prime}, y^{\prime \prime}=-\lambda-q(x)\right) \quad y$. Really, if at some root α one has $y^{\prime}(\alpha)>0$ then for $x>\alpha$ one has $y(x)>0$ and, consequently, $y^{\prime \prime}>0$ and $y^{\prime}>0$. Hence, there is no other roots greater than α.
Let ω be such (small) positive number that $\omega<\frac{1}{\lambda_{0}+1}$. Let us choose N so large that for $x>N$ one has $\int_{x}^{x+\omega} q(t) d t>\omega\left(\lambda_{0}+1\right)$
It is possible due to the condition for $q(x)$.
Note that the set of the solution roots has no accumulation points. Hence, we can choose n in such a way that $\alpha_{n}>N$, and, later, choose $m, m>n$, such that $\alpha_{m}-\alpha_{n}>\omega$. If one takes $\omega_{1}=P \omega, P$ - positive integer, then $\int_{x}^{x+P \omega} q(t) d t>\int_{x}^{x+\omega} q(t) d t>\omega\left(\lambda_{0}+1\right)$.due to positivity of q for the same x. Hence, we can believe that $\alpha_{m}-\alpha_{n}=P \omega$.
Let us rewrite the equation $y^{\prime \prime}+\lambda-q(x) y=0$ for $\lambda=\lambda_{0}$ in the form $y^{\prime \prime}=q(x)-\lambda_{0} y$.
Let us multiply the both parts by y and integrate from α_{n} to α_{m}. Integration by parts of the left hand side leads to the equation

$$
\begin{equation*}
-\int_{\alpha_{n}}^{\alpha_{m}} y^{\prime}(t)^{2} d t=\int_{\alpha_{n}}^{\alpha_{n}} q(t) y^{2}(t) d t-\lambda_{0} \int_{\alpha_{n}}^{\alpha_{n}} y^{2}(t) d t . \tag{2}
\end{equation*}
$$

The first integral in the right hand side can be represented in the form
$\int_{\alpha_{n}}^{\alpha_{n}} q(t) y^{2}(t) d t=\sum_{k=1}^{P} \int_{\alpha_{n}+(k-1) \omega}^{\alpha_{n}+k \omega} q(t) y^{2}(t) d t$.
The mean value theorem and (1) leads to the following inequality

$$
\begin{aligned}
& \int_{\alpha_{n}+(k-1) \omega}^{\alpha_{n}+k \omega} q(t) y^{2}(t) d t>\left(\lambda_{0}+1\right) y^{2}\left(\xi_{k}\right) \omega \\
& \alpha_{n}+(k-1) \omega<\xi_{k}<\alpha_{n}+k \omega .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{\alpha_{n}}^{\alpha_{m}} q(t) y^{2}(t) d t>\left(\lambda_{0}+1\right) \sum_{k=1}^{P} y^{2}\left(\xi_{k}\right) \omega=\left(\lambda_{0}+1\right) \int_{\alpha_{n}}^{\alpha_{m}} y^{2}(t) d t-\left(\lambda_{0}+1\right) \sum_{k=1}^{P} \int_{\alpha_{n}+(k-1) \omega}^{\alpha_{m}+k^{\omega}} y^{2}(t)-y^{2}\left(\xi_{k}\right) d t \tag{3}
\end{equation*}
$$

One can obtain the following correlation

$$
\begin{aligned}
& \left|y^{2}(t)-y^{2}\left(\xi_{k}\right)\right|=2\left|\int_{\xi_{k}}^{t} y^{\prime}(u) y(u) d u\right| \leq \int_{\xi_{k}}^{t} y^{2}(u) d u+\int_{\xi_{k}}^{t} y^{\prime}(u)^{2} d u \leq \\
& \leq \int_{\alpha_{n+(k-1) \omega}}^{\alpha_{n}+k \omega} y^{2}(u) d u+\int_{\alpha_{n+(k-1) \omega}}^{\alpha_{n}+k \omega} y^{\prime}(u)^{2} d u .
\end{aligned}
$$

Hence, inequality (3) gives us

$$
\begin{align*}
& \int_{\alpha_{n}}^{\alpha_{m}} q(t) y^{2}(t) d t>\left(\lambda_{0}+1\right) \int_{\alpha_{n}}^{\alpha_{m}} y^{2}(t) d t-\left(\lambda_{0}+1\right) \sum_{k=1}^{P} \int_{\alpha_{n}+(k-1) \omega}^{\alpha_{n}+k \omega}\left(\int_{\alpha_{n}+(k-1) \omega}^{\alpha_{n}+k \omega} y^{2}(u) d u\right) d t- \\
& -\left(\lambda_{0}+1\right) \sum_{k=1}^{P} \int_{\alpha_{n}+(k-1) \omega}^{\alpha_{n}+k \omega}\left(\int_{\alpha_{n}+(k-1) \omega}^{\alpha_{n}+k \omega} y^{\prime}(u)^{2} d u\right) d t= \\
& =\left(\lambda_{0}+1\right) \int_{\alpha_{n}}^{\alpha_{m}} y^{2}(t) d t-\left(\lambda_{0}+1\right) \omega \int_{\alpha_{n}}^{\alpha_{m}} y^{2}(t) d t-\left(\lambda_{0}+1\right) \omega \int_{\alpha_{n}}^{\alpha_{m}} y^{\prime}(t)^{2} d t \tag{4}
\end{align*}
$$

One obtains from (2) and (4)
$-\int_{\alpha_{n}}^{\alpha_{m}} y^{\prime}(t)^{2} d t>1-\left(\lambda_{0}+1\right) \omega \int_{\alpha_{n}}^{\alpha_{m}} y^{2}(t) d t-\left(\lambda_{0}+1\right) \omega \int_{\alpha_{n}}^{\alpha_{m}} y^{\prime}(t)^{2} d t$,
i.e..

$$
1-\left(\lambda_{0}+1\right) \omega \int_{\alpha_{n}}^{\alpha_{m}} y^{2}(t)+y^{\prime}(t)^{2} d t<0
$$

But it is impossible due to the inequality $\left(\lambda_{0}+1\right) \omega<1$.

