List of Problems. 6-th NCUMC - 2019.
28.04.2019

1. One makes three times extension of the plane $X O Y$ in $O Y$ direction $((x, y) \rightarrow$ $(x, 3 y))$. Find maximal variation of angle between directional vectors of lines on the plane under this transformation i.e. $\max |\beta-\alpha|$ where α is the angle before the transformation, β is the angle after the transformation.
2. Let

$$
a_{n}=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{1}{i^{2}+j^{2}}
$$

for every n. Find

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln (n)} .
$$

3. Let $d>1$ be a positive integer, denote $A=\left\{\left(x, x^{2}, \ldots, x^{d}\right): 0 \leqslant x \leqslant\right.$ 1\} $\subset \mathbb{R}^{d}$. Let $B=\operatorname{conv}(A)$ be a convex hull of the set A. Denote by v_{d} the (d-dimensional) volume of B. Prove that there exists constants $c_{1}, c_{2} \in(0,1)$ not depending on d such that $c_{1}^{d^{2}}<v_{d}<c_{2}^{d^{2}}$ for all $d>1$.
4. Let $\left\{v_{0}, \ldots, v_{2099}\right\} \subset \mathbb{R}^{2100}$ be the family of vectors given by the formula

$$
\begin{aligned}
v_{0} & =(\underbrace{0, \ldots, 0}_{2019}, \underbrace{1, \ldots, 1}_{81}), \\
v_{k} & =(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{2019}, \underbrace{1, \ldots, 1}_{81-k}) \text { for every } 1 \leqslant k \leqslant 81, \\
v_{81+k} & =(\underbrace{0, \ldots, 0}_{k}, \underbrace{1, \ldots, 1}_{81}, \underbrace{0, \ldots, 0}_{2019-k}) \text { for every } 1 \leqslant k \leqslant 2018 .
\end{aligned}
$$

Find the dimension of the linear hull of $\left\{v_{0}, \ldots, v_{2099}\right\}$.
5. For given integer $n \geqslant 1$ find the least $c>0$ such that that the $n \times n$ matrix $c R^{-1}-D^{-1}$ is non-negative definite for any symmetric positive definite matrix R with diagonal D (in other words, D is obtained from R by replacing all non-diagonal entries to 0).
6. Consider the equation $y^{\prime \prime}+f(x) y=0$, where $f(x)$ is a monotonically increasing continuous function on \mathbb{R} with $\inf _{x \in \mathbb{R}} f(x)>0$. It is known that any non-trivial solution y to the equation is oscillating, thus having an infinite sequence of zeroes $\left\{x_{i}\right\}, y\left(x_{i}\right)=0$, and an infinite sequence of local extrema $\left\{x_{i}^{\prime}\right\}, y^{\prime}\left(x_{i}^{\prime}\right)=0$, such that $x_{i}<x_{i}^{\prime}<x_{i+1}$. Prove that (i) $\left|y\left(x_{i}^{\prime}\right)\right|$ decreases, (ii) $\left|y^{\prime}\left(x_{i}\right)\right|$ increases.
7. Let f be an analytic function in $D=\{z:|z|<1\}$ such that $|f(z)| \leq 1$. Prove that for $z \in D$ one has

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

List of Problems. 6-th NCUMC - 2019.
28.04.2019

1. One makes three times extension of the plane $X O Y$ in $O Y$ direction $((x, y) \rightarrow$ $(x, 3 y)$). Find maximal variation of angle between lines on the plane under this transformation.
2. Let

$$
a_{n}=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{1}{i^{2}+j^{2}}
$$

for every n. Find

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln (n)} .
$$

3. Let $d>1$ be a positive integer, denote $A=\left\{\left(x, x^{2}, \ldots, x^{d}\right): 0 \leqslant x \leqslant\right.$ $1\} \subset \mathbb{R}^{d}$. Let $B=$ conv (A) be a convex hull of the set A. Denote by v_{d} the (d-dimensional) volume of B. Prove that there exists constants $c_{1}, c_{2} \in(0,1)$ not depending on d such that $c_{1}^{d^{2}}<v_{d}<c_{2}^{d^{2}}$ for all $d>1$.
4. Let $\left\{v_{0}, \ldots, v_{2099}\right\} \subset \mathbb{R}^{2100}$ be the family of vectors given by the formula

$$
\begin{aligned}
v_{0} & =(\underbrace{0, \ldots, 0}_{2019}, \underbrace{1, \ldots, 1}_{81}), \\
v_{k} & =(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{2019}, \underbrace{1, \ldots, 1}_{81-k}) \text { for every } 1 \leqslant k \leqslant 81, \\
v_{81+k} & =(\underbrace{0, \ldots, 0}_{k}, \underbrace{1, \ldots, 1}_{81}, \underbrace{0, \ldots, 0}_{2019-k}) \text { for every } 1 \leqslant k \leqslant 2018 .
\end{aligned}
$$

Find the dimension of the linear hull of $\left\{v_{0}, \ldots, v_{2099}\right\}$.
5. For given integer $n \geqslant 1$ find the least $c>0$ such that that the matrix $c R^{-1}-D^{-1}$ is non-negative definite for any symmetric positive definite matrix R with diagonal D (in other words, D is obtained from R by replacing all non-diagonal entries to 0).
6. Consider the equation $y^{\prime \prime}+f(x) y=0$, where $f(x)$ is a monotonically increasing continuous function on \mathbb{R} with $\inf _{x \in \mathbb{R}} f(x)>0$. It is known that any non-trivial solution y to the equation is oscillating, thus having an infinite sequence of zeroes $\left\{x_{i}\right\}, y\left(x_{i}\right)=0$, and an infinite sequence of local extrema $\left\{x_{i}^{\prime}\right\}, y^{\prime}\left(x_{i}^{\prime}\right)=0$, such that $x_{i}<x_{i}^{\prime}<x_{i+1}$. Prove that (i) $\left|y\left(x_{i}^{\prime}\right)\right|$ decreases, (ii) $\left|y^{\prime}\left(x_{i}\right)\right|$ increases.
7. Let f be an analytic function in $D=\{z:|z|<1\}$ such that $|f(z)| \leq 1$. Prove that for $z \in D$ one has

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

