List of Problems. 6-th NCUMC - 2019. 28.04.2019

1. One makes three times extension of the plane XOY in OY direction $((x, y) \rightarrow x)$ (x, 3y)). Find maximal variation of angle between directional vectors of lines on the plane under this transformation i.e. $\max |\beta - \alpha|$ where α is the angle before the transformation, β is the angle after the transformation.

2. Let

$$a_n = \sum_{j=1}^n \sum_{i=1}^n \frac{1}{i^2 + j^2}$$

for every n. Find

$$\lim_{n \to \infty} \frac{a_n}{\ln(n)}$$

3. Let d > 1 be a positive integer, denote $A = \{(x, x^2, \dots, x^d) : 0 \leq x \leq d\}$ 1} $\subset \mathbb{R}^d$. Let $B = \operatorname{conv}(A)$ be a convex hull of the set A. Denote by v_d the (d-dimensional) volume of B. Prove that there exists constants $c_1, c_2 \in (0, 1)$ not depending on d such that $c_1^{d^2} < v_d < c_2^{d^2}$ for all d > 1. 4. Let $\{v_0, \ldots, v_{2099}\} \subset \mathbb{R}^{2100}$ be the family of vectors given by the formula

$$v_{0} = (\underbrace{0, \dots, 0}_{2019}, \underbrace{1, \dots, 1}_{81}),$$

$$v_{k} = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{2019}, \underbrace{1, \dots, 1}_{81-k}) \quad \text{for every } 1 \le k \le 81,$$

$$v_{81+k} = (\underbrace{0, \dots, 0}_{k}, \underbrace{1, \dots, 1}_{81}, \underbrace{0, \dots, 0}_{2019-k}) \quad \text{for every } 1 \le k \le 2018.$$

Find the dimension of the linear hull of $\{v_0, \ldots, v_{2099}\}$.

5. For given integer $n \ge 1$ find the least c > 0 such that the $n \times n$ matrix $cR^{-1} - D^{-1}$ is non-negative definite for any symmetric positive definite matrix R with diagonal D (in other words, D is obtained from R by replacing all non-diagonal entries to 0).

6. Consider the equation y'' + f(x)y = 0, where f(x) is a monotonically increasing continuous function on \mathbb{R} with $\inf_{x \in \mathbb{R}} f(x) > 0$. It is known that any non-trivial solution y to the equation is oscillating, thus having an infinite sequence of zeroes $\{x_i\}, y(x_i) = 0$, and an infinite sequence of local extrema $\{x'_i\}, y'(x'_i) = 0$, such that $x_i < x'_i < x_{i+1}$. Prove that (i) $|y(x'_i)|$ decreases, (ii) $|y'(x_i)|$ increases.

7. Let f be an analytic function in $D = \{z : |z| < 1\}$ such that $|f(z)| \le 1$. Prove that for $z \in D$ one has

$$\frac{|f'(z)|}{1-|f(z)|^2} \le \frac{1}{1-|z|^2}$$

List of Problems. 6-th NCUMC - 2019. 28.04.2019

1. One makes three times extension of the plane XOY in OY direction $((x, y) \rightarrow x)$ (x, 3y)). Find maximal variation of angle between lines on the plane under this transformation. 2. Let

$$a_n = \sum_{j=1}^n \sum_{i=1}^n \frac{1}{i^2 + j^2}$$

for every n. Find

$$\lim_{n \to \infty} \frac{a_n}{\ln(n)}.$$

3. Let d > 1 be a positive integer, denote $A = \{(x, x^2, \dots, x^d) : 0 \leq x \leq d\}$ 1} $\subset \mathbb{R}^d$. Let $B = \operatorname{conv}(A)$ be a convex hull of the set A. Denote by v_d the (d-dimensional) volume of B. Prove that there exists constants $c_1, c_2 \in (0, 1)$ not depending on d such that $c_1^{d^2} < v_d < c_2^{d^2}$ for all d > 1. 4. Let $\{v_0, \ldots, v_{2099}\} \subset \mathbb{R}^{2100}$ be the family of vectors given by the formula

$$v_{0} = (\underbrace{0, \dots, 0}_{2019}, \underbrace{1, \dots, 1}_{81}),$$

$$v_{k} = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{2019}, \underbrace{1, \dots, 1}_{81-k}) \text{ for every } 1 \leq k \leq 81,$$

$$v_{81+k} = (\underbrace{0, \dots, 0}_{k}, \underbrace{1, \dots, 1}_{81}, \underbrace{0, \dots, 0}_{2019-k}) \text{ for every } 1 \leq k \leq 2018.$$

Find the dimension of the linear hull of $\{v_0, \ldots, v_{2099}\}$.

5. For given integer $n \ge 1$ find the least c > 0 such that the matrix $cR^{-1} - D^{-1}$ is non-negative definite for any symmetric positive definite matrix R with diagonal D (in other words, D is obtained from R by replacing all non-diagonal entries to 0).

6. Consider the equation y'' + f(x)y = 0, where f(x) is a monotonically increasing continuous function on \mathbb{R} with $\inf_{x \in \mathbb{R}} f(x) > 0$. It is known that any non-trivial solution y to the equation is oscillating, thus having an infinite sequence of zeroes $\{x_i\}, y(x_i) = 0$, and an infinite sequence of local extrema $\{x'_i\}, y'(x'_i) = 0$, such that $x_i < x'_i < x_{i+1}$. Prove that (i) $|y(x'_i)|$ decreases, (ii) $|y'(x_i)|$ increases.

7. Let f be an analytic function in $D = \{z : |z| < 1\}$ such that $|f(z)| \leq 1$. Prove that for $z \in D$ one has

$$\frac{|f'(z)|}{1-|f(z)|^2} \le \frac{1}{1-|z|^2}.$$