
List of Problems. 6-th NCUMC - 2019.
28.04.2019
1. One makes three times extension of the plane XOY in OY direction ((x, y) → (x, 3y)). Find

maximal variation of angle between directional vectors of lines on the plane under this transformation i.e.
max |β − α| where α is the angle before the transformation, β is the angle after the transformation.

2. Let

an =

n∑
j=1

n∑
i=1

1

i2 + j2

for every n. Find
lim
n→∞

an
ln(n) .

3. Let d > 1 be a positive integer, denote A = {(x, x2, . . . , xd) : 0 6 x 6 1} ⊂ Rd. Let B = conv (A)
be a convex hull of the set A. Denote by vd the (d-dimensional) volume of B. Prove that there exists
constants c1, c2 ∈ (0, 1) not depending on d such that cd21 < vd < cd

2

2 for all d > 1.
4. Let {v0, . . . , v2099} ⊂ R2100 be the family of vectors given by the formula

v0 = (0, . . . , 0︸ ︷︷ ︸
2019

, 1, . . . , 1︸ ︷︷ ︸
81

),

vk = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
2019

, 1, . . . , 1︸ ︷︷ ︸
81−k

) for every 1 6 k 6 81,

v81+k = (0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
81

, 0, . . . , 0︸ ︷︷ ︸
2019−k

) for every 1 6 k 6 2018.

Find the dimension of the linear hull of {v0, . . . , v2099}.
5. For given integer n > 1 find the least c > 0 such that that the n × n matrix cR−1 − D−1 is

non-negative definite for any symmetric positive definite matrix R with diagonal D (in other words, D is
obtained from R by replacing all non-diagonal entries to 0).

6. Consider the equation y′′+f(x)y = 0, where f(x) is a monotonically increasing continuous function
on R with infx∈R f(x) > 0. It is known that any non-trivial solution y to the equation is oscillating, thus
having an infinite sequence of zeroes {xi}, y(xi) = 0, and an infinite sequence of local extrema {x′i},
y′(x′i) = 0, such that xi < x′i < xi+1. Prove that (i) |y(x′i)| decreases, (ii) |y′(xi)| increases.

7. Let f be an analytic function in D = {z : |z| < 1} such that |f(z)| ≤ 1. Prove that for z ∈ D one
has

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.
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Solutions.
1 (suggested by ITMO University). One makes three times extension of the plane XOY in OY

direction ((x, y) → (x, 3y)). Find maximal variation of angle between directional vectors of lines on the
plane under this transformation i.e. max |β − α| where α is the angle before the transformation, β is the
angle after the transformation.

1. Solution. Answer: π
3 .

Line y = kx+ b transforms to y = 3kx+ 3b, i.e. rotates to the angle φ = arctan(3k)− arctan k. Let
us find extrema of φ.

dφ

dk
=

3

1 + 9k2
− 1

1 + k2
=

2(1− 3k2)

(1 + 9k2)(1 + k2)
= 0.

One has maximum for k = 1√
3
, maxφ = π

6 , and minimum for k = − 1√
3
, minφ = −π

6 . Correspondingly,
maximal variation of angle is maxφ−minφ = π

3 .
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2 (suggested by Adam Mickiewicz University, Poznan). Let

an =
n∑
j=1

n∑
i=1

1

i2 + j2

for every n. Find
lim
n→∞

an
ln(n) .

2. Solution. Let
f(x, y) =

1

x2 + y2
.

Since
1

s2 + t2
6

1

i2 + j2
6

1

x2 + y2

for every (s, t) ∈ [i−1, i]× [j−1, j] and (x, y) ∈ [i, i+1]× [j, j+1] and i, j ∈ N, there holds the inequalities

an 6
1

2
+

∑
{(i,j)∈{1,...,n}2\{(1,1)}}

∫
(i−1,i]×([j−1,j]

1

x2 + y2
dxdy

6
1

2
+

∫
{(x,y)∈R2:x>0,y>0,16x2+y262n2}

1

x2 + y2
dxdy

6
1

2
+

∫ √2n
1

∫ π
2

0

r

r2
dφdr =

1

2
+
π

2
ln(
√
2n) =

π

2
ln(n) +

1

2
+
π

2
ln(
√
2)

and

an >
∑

{(i,j)∈{1,...,n}2}

∫
[i,i+1)×[j,j+1)

1

x2 + y2
dxdy

>
∫
[0,n)2\[0,1)2

1

x2 + y2
dxdy −

∫
[0,1]×[1,n)

1

x2 + y2
dxdy −

∫
[1,n)×[0,1]

1

x2 + y2
dxdy

>
∫
{(x,y)∈R2:x>0,y>0,26x2+y2<n2}

1

x2 + y2
dxdy − 2

∫ n

1

1

x2
dx

>
∫ n

√
2

∫ π
2

0

r

r2
dφdr − 2(1− 1

n) =
π

2
(ln(n)− ln(

√
2))− 2(1− 1

n).

Gather together all the facts above we obtain

lim
n→∞

an
ln(n) =

π
2 .
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3 (suggested by Saint Petersburg State University). Let d > 1 be a positive integer, denote A =
{(x, x2, . . . , xd) : 0 6 x 6 1} ⊂ Rd. Let B = conv (A) be a convex hull of the set A. Denote by vd the
(d-dimensional) volume of B. Prove that there exists constants c1, c2 ∈ (0, 1) not depending on d such
that cd21 < vd < cd

2

2 for all d > 1.
3. Solution. Choose the points p0, p1, . . . , pd on the curve A so that the volume wd of the simplex T

with the vertices p0, p1, . . . , pd is maximal. Denote by T̃ the simplex homothetic to T in its barycentre
and coefficient −d (in other words, the facets of T̃ are parallel to those of T and pass through respective
vertices of T .) Then T ⊂ A ⊂ T̃ (the second inclusion follows from the maximality of the volume).
Therefore wd 6 vd 6 ddwd and log vd = logwd + o(d2), hence it suffices to prove the same estimate for
wd (this allows to find the constants c1, c2 working for all large enough d, but for bounded d > 1 some
constants work simply because 0 < vd < 1).

If pi = (xi, x
2
i , . . . , x

d
i ), we have

d!wd =

∣∣∣∣∣∣∣
1 x0 x20 . . . x0
1 x1 x21 . . . xd1. . . . . . . . . . . . . . .
1 xd x2d . . . xdd

∣∣∣∣∣∣∣ =
∏

06i<j6d

|xi − xj |.

For estimating this product from above, note that
∑

i<j |xi− xj | 6 [(d+1)2/4] (for example, we may
assume x0 < x1 < · · · < xd, then the sum equals dxd+(d− 2)xd−1 + · · ·+(−d)x0 6 d+(d− 2)+ . . . (d−
2[d/2])) = [(d+ 1)2/4].) Therefore

d!wd 6

(
[(d+ 1)2/4]

d(d+ 1)/2

)d(d+1)/2

=

(
1

2
+ o(1)

)d2/2
.

For the lower estimate, note that for yi = i/d (this is not the best possible, but enough for our goal) we
have ∏

i<j

|yi − yj |2 =
∏
i

i!(d− i)!
dd

>
d∏
i=0

(
1

2e

)d
=

(
1

2e

)d(d+1)

.

Here we used the standard inequalities i! > (i/e)i (may be proved by induction) and ii(d− i)d−i > (d/2)d

(may be proved by taking the derivative in i).
Remark. It is known that the maximum of

∏
i<j |xi − xj | is attained when xi’s are 0, 1 and the roots

of Jacobi polynomial Jd−1(1, 1, x). The asymptotics of the maximum is (2 + o(1))−d
2 .

4



4 (suggested by Adam Mickiewicz University, Poznan). Let {v0, . . . , v2099} ⊂ R2100 be the family of
vectors given by the formula

v0 = (0, . . . , 0︸ ︷︷ ︸
2019

, 1, . . . , 1︸ ︷︷ ︸
81

),

vk = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
2019

, 1, . . . , 1︸ ︷︷ ︸
81−k

) for every 1 6 k 6 81,

v81+k = (0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
81

, 0, . . . , 0︸ ︷︷ ︸
2019−k

) for every 1 6 k 6 2018.

Find the dimension of the linear hull of {v0, . . . , v2099}.
4. Solution. We will need the following well known lemma.
Lemma

For every a0, . . . , an−1 ∈ C

det

 a0 a1 . . . an−1
an−1 a0 . . . an−2

...
...

. . .
...

a1 a2 . . . a0

 = g(ω1
n) · . . . · g(ωnn)

where

g(x) =
n−1∑
j=0

ajx
j

and ωn = cos
(
2π
n

)
+ i sin

(
2π
n ).

Let

h(x) =
2099∑
j=2019

xj = x2019
1− x81

1− x
.

For every λ ∈ C

det

 v0v1
...

v2099

− λI
 = (−λ+ h(ω1

2100)) · . . . · (−λ+ h(ω2100
2100)).

Hence
dim

(
lin{v0, . . . , v2099}

)
= 2019 + 81− |{1 6 k 6 2099 : (ωk2100)

81 = 1}|.

It is easy to see that 34k = 22 · 3 · 52 · 7p for some p ∈ N only for k = 700 and k = 1400. Therefore

dim
(
lin{v0, . . . , v2099}

)
= 2098.

Proof of Lemma

det

 a0 a1 . . . an−1
an−1 a0 . . . an−2
...

...
. . .

...
a1 a2 . . . a0

 det


1 1 . . . 1
ωn ω2

n . . . ωnn
...

...
. . .

...
ωn−1n ω

2(n−1)
n . . . ω

n(n−1)
n



= det


g(ωn) g(ω2

n) . . . g(ωnn)
ωng(ωn) ω2

ng(ω
2
n) . . . ωnng(ω

n
n)

...
...

. . .
...

ωn−1n g(ωn) ω
2(n−1)
n g(ω2

n) . . . ω
n(n−1)
n g(ωnn)



= g(ω1
n) · . . . · g(ωnn) · det


1 1 . . . 1
ωn ω2

n . . . ωnn
...

...
. . .

...
ωn−1n ω

2(n−1)
n . . . ω

n(n−1)
n

 .
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5 (suggested by Saint Petersburg State University). For given integer n > 1 find the least c > 0 such
that that the n×n matrix cR−1−D−1 is non-negative definite for any symmetric positive definite matrix
R with diagonal D (in other words, D is obtained from R by replacing all non-diagonal entries to 0).

5. Answer: c = n.
Let R be a matrix with diagonal entries equal to 1 and off-diagonal entries equal to 1 − t for small

t ∈ (0, 1). The eigenvalues of this matrix are n − nt (with eigenvector u = (1, 1, . . . , 1)) and t (with
multiplicity n−1 and eigenvectors orthogonal to u). Thus R is positive definite, and R−1 has an eigenvalue
(n − nt)−1. Therefore cR−1 − D−1 = cR−1 − I has eigenvalue cn(1 − t) − 1 and if c < n, this is
negative for small t. Therefore c > n. Now we prove that c = n works. Denote R = D1/2QD1/2, then
Q = D−1/2RD−1/2 is a positive definite symmetric matrix with all diagonal elements equal to 1. And we
have to prove that nR−1 − D−1 = D−1/2(nQ−1 − I)D−1/2 is non-negative definite. Note that the sum
of eigenvalues of Q equals to the trace of Q, which equals to n. Therefore all eigenvalues of Q belong to
(0, n), and all eigenvalues of Q−1 belong to (1/n,∞), that just means that nQ−1 − I is positive definite.
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6 (suggested by Moscow State University). Consider the equation y′′ + f(x)y = 0, where f(x) is a
monotonically increasing continuous function on R with infx∈R f(x) > 0. It is known that any non-trivial
solution y to the equation is oscillating, thus having an infinite sequence of zeroes {xi}, y(xi) = 0, and
an infinite sequence of local extrema {x′i}, y′(x′i) = 0, such that xi < x′i < xi+1. Prove that (i) |y(x′i)|
decreases, (ii) |y′(xi)| increases.

6. Solution. Multiplying the equation by 2y′(x) and then integrating it over an arbitrary segment
[a; b], we obtain

y′(b)2 − y′(a)2 +
∫ b

a
2f(x) y(x) y′(x) dx = 0. (∗)

Put hj = y(x′j) and vj = y′(xj). Now we use formula (*) for various segments [a; b].

(i) On (x′j−1;xj) and (xj ;x
′
j) we have respectively y(x)y′(x) < 0 and y(x)y′(x) > 0, whence

0 = v2j +

∫ xj

x′j−1

2f(x) y(x) y′(x) dx > v2j + f(xj)

∫ xj

x′j−1

2y(x) y′(x) dx = v2j − f(xj)h2j−1

and

0 = −v2j +
∫ x′j

xj

2f(x) y(x) y′(x) dx > −v2j + f(xj)

∫ x′j

xj

2y(x) y′(x) dx = −v2j + f(xj)h
2
j .

The sum of the last two inequalities gives 0 > f(xj)(−h2j−1 + h2j ), whence |hj | decreases.

(ii) On (xj ;x
′
j) and (x′j ;xj+1) we have respectively y(x)y′(x) > 0 and y(x)y′(x) < 0, whence

0 = −v2j +
∫ x′j

xj

2f(x) y(x) y′(x) dx < −v2j + f(x′j)

∫ x′j

xj

2y(x) y′(x) dx = −v2j + f(x′j)h
2
j

and

0 = v2j+1 +

∫ xj+1

x′j

2f(x) y(x) y′(x) dx < v2j+1 + f(x′j)

∫ xj+1

x′j

2y(x) y′(x) dx = v2j+1 − f(x′j)h2j .

The sum of the last two inequalities gives 0 < −v2j + v2j+1, whence increases.
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7 (suggested by ITMO University). Let f be an analytic function in D = {z : |z| < 1} such that
|f(z)| ≤ 1. Prove that for z ∈ D one has

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

7. Solution. Let us prove the following lemma.
Lemma (Schwartz lemma). Let g be an analytic function in D = {z : |z| < 1} such that |g(z)| ≤ 1

and g(0) = 0 then |g(z)| ≤ |z|, |z| < 1.
Proof of the lemma. Function h(z) = g(z)

z is analytic in D. |h(z)| ≤ 1, |z| = 1. In accordance with the
maximum principle, |h(z)| ≤ 1, |z| < 1. This proves the lemma.

Let z, z0 ∈ D and
w(z) =

z − z0
1− z0z

.

This is a map of D onto D, z0 = w−1(0). Consider the analytic function

f(z)− f(z0)
1− f(z0)f(z)

as a function of new variable w(z). Due to the Lemma, one has

| f(z)− f(z0)
1− f(z0)f(z)

| ≤ | z − z0
1− z0z

|, z 6= z0.

Let z0 → z. Due to the fact that |f(z)−f(z0)z−z0 | → |f ′(z)|, one comes to the inequality

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.
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