List of Problems. 6-th NCUMC - 2019.
28.04.2019

1. One makes three times extension of the plane XOY in OY direction ((z,y) — (z,3y)). Find
maximal variation of angle between directional vectors of lines on the plane under this transformation i.e.
max |3 — a| where « is the angle before the transformation, /3 is the angle after the transformation.

2. Let
n n 1
w=3.2 57
==’ T
for every n. Find
lim 22,
n—oo (1)

3. Let d > 1 be a positive integer, denote A = {(z,22,...,2%) : 0 < 2 < 1} C R% Let B = conv (A)
be a convex hull of the set A. Denote by vy the (d-dimensional) volume of B. Prove that there exists
constants ¢, ca € (0,1) not depending on d such that ciﬁ < g < 032 for all d > 1.

4. Let {vo,...,v2000} C R0 be the family of vectors given by the formula
vo = (0,...,0,1,...,1),
—_——— ——
2019 81
vg=(1,...,1,0,...,0,1,...,1) for every 1 < k < 81,
—— ——— N——
k 2019 81—k
vg14k = (0,...,0,1,...,1,0,...,0) for every 1 < k < 2018.
—— ——— ——
k 81 2019—k
Find the dimension of the linear hull of {vy, ..., va099}.

5. For given integer n > 1 find the least ¢ > 0 such that that the n x n matrix cR™! — D71 is
non-negative definite for any symmetric positive definite matrix R with diagonal D (in other words, D is
obtained from R by replacing all non-diagonal entries to 0).

6. Consider the equation y”+ f(x)y = 0, where f(z) is a monotonically increasing continuous function
on R with infcr f(x) > 0. It is known that any non-trivial solution y to the equation is oscillating, thus
having an infinite sequence of zeroes {z;}, y(z;) = 0, and an infinite sequence of local extrema {z}},
y'(x}) = 0, such that z; < z} < z;41. Prove that (i) |y(«})| decreases, (ii) |y/(z;)| increases.

7. Let f be an analytic function in D = {z : |2| < 1} such that |f(z)| < 1. Prove that for z € D one
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Solutions.

1 (suggested by ITMO University). One makes three times extension of the plane XOY in OY
direction ((x,y) — (x,3y)). Find maximal variation of angle between directional vectors of lines on the
plane under this transformation i.e. max |3 — «| where « is the angle before the transformation, /3 is the
angle after the transformation.

1. Solution. Answer: %

Line y = kx + b transforms to y = 3kz + 3b, i.e. rotates to the angle ¢ = arctan(3k) — arctan k. Let
us find extrema of ¢.
dp 3 1 2(1-3k?)

dk ~ 1+9k2 1+k2  (1+9K2)(L+k2)

One has maximum for k£ = %, max ¢ = ¢, and minimum for k = —%, min ¢ = —¢. Correspondingly,

maximal variation of angle is max ¢ — min¢ = %.



2 (suggested by Adam Mickiewicz University, Poznan). Let

an_2222+j

7j=1 =1

for every n. Find

2. Solution. Let 1

f(x,y): £2+y2.

Since
1 1 1

S 535 <
212 T 2452 T 2?4 y?
for every (s,t) € [i—1,i]x[j—1,j] and (x,y) € [i,i+1] x [j,j+1] and i, j € N, there holds the inequalities
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and
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1 1 1
> / —5 5 dwdy — / —5 5 dxdy — / —5 5 dxdy
[0,n)2 \[01)2$ +y [Ol]x[ln)x ‘H/ [1,n)% [Ol}x +y

> / dxdy 2/ —dx
(z,y)ER2:2>0,y>0,2<x2 +y2<n?} z?

/ / —dgf)dr—Q( 1) = 5(1n(n) —In(v2)) —2(1 - 2).

Gather together all the facts above we obtain

lim %o =T,
n— oo In(n) 2



3 (suggested by Saint Petersburg State University). Let d > 1 be a positive integer, denote A =
{(z,2%,...,2%) : 0 <z < 1} C R% Let B = conv (A) be a convex hull of the set A. Denote by vy the
(d-dimensional) volume of B. Prove that there exists constants c¢1,c2 € (0,1) not depending on d such
that cip <wg < ch for all d > 1.

3. Solution. Choose the points pg, p1,-..,pq on the curve A so that the volume wy of the simplex T
with the vertices po,p1, ..., pq is maximal. Denote by T the simplex homothetic to T in its barycentre
and coefficient —d (in other words, the facets of T are parallel to those of T and pass through respective
vertices of T.) Then T C A C T (the second inclusion follows from the maximality of the volume).
Therefore wy < vg < d%wy and logvg = logwg + o(d?), hence it suffices to prove the same estimate for
wq (this allows to find the constants c;,co working for all large enough d, but for bounded d > 1 some
constants work simply because 0 < vg < 1).

2 d
If pi = (@i, a7, ..., x¢), we have
1 =z x§ xg
1 zg 22 zd|  0<i<j<d

For estimating this product from above, note that >, [z; — x| < [(d + 1)2/4] (for example, we may
assume xg < 1 < --- < &4, then the sum equals dzg + (d —2)xg_1 + -+ (—d)zg < d+ (d—2)+...(d—
2[d/2])) = [(d + 1)2/4].) Therefore

(d+ 124\ o
mos (arne) = (a0)

For the lower estimate, note that for y; = i/d (this is not the best possible, but enough for our goal) we

have J
. . d d(d+1)
oy ¢(d—10)! 1\ /(1
Tl =TT 2 ST (L) = (1)

i<j i i=0

Here we used the standard inequalities 3! > (i/e)? (may be proved by induction) and i*(d — )4~ > (d/2)?
(may be proved by taking the derivative in 7).

Remark. It is known that the maximum of [[,_. |z; — ;| is attained when ;s are 0,1 and the roots

1<J
of Jacobi polynomial Jy_;(1,1,z). The asymptotics of the maximum is (2 + o(1))~%.



4 (suggested by Adam Mickiewicz University, Poznan). Let {vg,...,v2009} C R?'% be the family of
vectors given by the formula

v =(0,...,0,1,...,1),
—— ——
2019 81
v =(1,...,1,0,...,0,1,...,1) forevery 1 < k < 81,
——— ——— ——
k 2019 81—k
vgi4k = (0,...,0,1,...,1,0,...,0) for every 1 < k < 2018.
—_—— —— ——
k 81 2019—k
Find the dimension of the linear hull of {vy, ..., v2099}.
4. Solution. We will need the following well known lemma.
Lemma
For every ag,...,an—1 € C
aaol g(l) . gn_%
n— n—
det : = g(wn) g9(wy)
ap  dap do
where
n—1 ‘
x) = Zajx]
=0
and wy, = cos(ZX) + isin(2).
Let 2099
1— 81
Z 2 — 22019 — T ‘
j=2019 -t
For every A € C
go
1
V2099

Hence
dim (lin{vo, . .., v2009}) = 2019 + 81 — [{1 < k < 2099 : (wh;0)% = 1}.

It is easy to see that 3*k = 22352 . 7p for some p € N only for k = 700 and k = 1400. Therefore

dim (lin{vo, ey U2099}) = 2098.

Proof of Lemma
1 1 1

anly @y Ll aiTs N R

det : - . det : ]

dl dg do O.)n._l wTQL(ﬁ—l) wg(ﬁ_l)
9(wn) g(wn) g(wp)
wng(wn wng(wn) wpg(wy)

= det . : :
n—1 2(n-1) 2 n(n-1)_« n
wpmg(wn) wn glwn) o wn glwn)
1 12 1
Wr, w; wy
o) gl det | -
Wil T2L(n*1) Z(nfl)



5 (suggested by Saint Petersburg State University). For given integer n > 1 find the least ¢ > 0 such
that that the n x n matrix cR~! — D~! is non-negative definite for any symmetric positive definite matrix
R with diagonal D (in other words, D is obtained from R by replacing all non-diagonal entries to 0).

5. Answer: c=mn. . . ) )
Let R be a matrix with diagonal entries equal to 1 and off-diagonal entries equal to 1 — ¢ for small

t € (0,1). The eigenvalues of this matrix are n — nt (with eigenvector u = (1,1,...,1)) and ¢ (with
multiplicity n—1 and eigenvectors orthogonal to u). Thus R is positive definite, and R~! has an eigenvalue
(n — nt)~!. Therefore cR™* — D7! = ¢cR™! — I has eigenvalue cn(1 —t) — 1 and if ¢ < n, this is
negative for small t. Therefore ¢ > n. Now we prove that ¢ = n works. Denote R = DY2QD'/2, then
Q = DY2RD~'/2 is a positive definite symmetric matrix with all diagonal elements equal to 1. And we

have to prove that nR~' — D~' = D=Y2(nQ~' — I'D~'/2 is non-negative definite. Note that the sum
of eigenvalues of @) equals to the trace of ), which equals to n. Therefore all eigenvalues of ) belong to
(0,n), and all eigenvalues of @' belong to (1/n,0c0), that just means that n@Q~! — I is positive definite.



6 (suggested by Moscow State University). Consider the equation y” + f(x)y = 0, where f(x) is a
monotonically increasing continuous function on R with inf,cr f(z) > 0. It is known that any non-trivial
solution y to the equation is oscillating, thus having an infinite sequence of zeroes {x;}, y(z;) = 0, and
an infinite sequence of local extrema {z}, y/(z;) = 0, such that x; < 2} < z;41. Prove that (i) |y(z})]

decreases, (ii) |y/(z;)| increases.

6. Solution. Multiplying the equation by 2y'(x) and then integrating it over an arbitrary segment

[a; b], we obtain
b
YO~y @+ [ 2@ y(a) v/ (@) do =0
Put h; = y(z;) and v; = y'(x;). Now we use formula (*) for various segments [a; b].

(i) On (z}_y;2;) and (z;;2}) we have respectively y(z)y' () < 0 and y(z)y’(z) > 0, whence

Zj

0=v;+ /xj 2f(2)y(z)y'(x) dz > v} + f(fvj)/ 2y(x) y' () de = vf — f(z;)h]_,

/ /
j—1 Tj—1

and , /
0=—v? +/ 2f () y(2)y (x) dz > —v? + f(xj)/ 2y(2)y (z) dz = —v? + f(z;)h?.
z; z;
The sum of the last two inequalities gives 0 > f (a:j)(—h]{l + hjz), whence |h;| decreases.

(ii) On (zj; 2/

%) and (2%; x;11) we have respectively y(z)y'(x) > 0 and y(z)y' () < 0, whence

/

0= —1)]2 + /x]- 2f(x)y(z) Y (z) dz < —vjz- + f(ac;) /xj 2y(z) ' (z) dx = —1)]2 + f(x;)hi

J j
and

Zj+1

0=t [ 2f@) @)y @) de < oy £ [ 20l0) o/ @) de = oy~ SR

/

The sum of the last two inequalities gives 0 < —UJ2- + ’UJQ- 1, whence increases.

(%)



7 (suggested by ITMO University). Let f be an analytic function in D = {z : |z| < 1} such that
|f(2)] < 1. Prove that for z € D one has

() 1
T—f()F = T o]

7. Solution. Let us prove the following lemma.

Lemma (Schwartz lemma). Let g be an analytic function in D = {z : |z| < 1} such that |g(z)| < 1
and ¢g(0) = 0 then |g(2)| < |z|, 2] < 1.

Proof of the lemma. Function h(z) = 9G) iy analytic in D. |h(2)| <1, |z| =1. In accordance with the

o
maximum principle, |h(z)| <1, |z| < 1. This proves the lemma.
Let 2,20 € D and
z— 20

w(z) = -

This is a map of D onto D, 2y = w~*(0). Consider the analytic function

1(2) = f(20)
1= G0/ (2)

as a function of new variable w(z). Due to the Lemma, one has

1) = 1z0) | b’
1 — f(20)f(2) 1 = %02

| |a Z#ZO'

Let zgp — z. Due to the fact that \M| — | f'(2)|, one comes to the inequality

() 1
T—[f()F = 1= o2




