Problems for NCUMC 2023 23.04.2023

1. Polynomial $P(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + 1$ with non-negative coefficients has *n* real roots. Prove that $P(2023) \ge 2024^n$.

2. Function f is twice continuously differentiable on the real axis and satisfies the relation f''(x) + xg(x)f'(x) + f(x) = 0, $\forall x$, where $g(x) \ge 0$. Prove that f(x) is bounded.

3. Let $A, O_1, O_2, \dots O_{2023}$ be 2024 points in \mathbb{R}^3 . Let point A_1 is symmetric to A in respect to O_1 , point A_2 is symmetric to A_1 in respect to O_2 , ... point A_{2023} is symmetric to A_{2022} in respect to O_{2023} , and, continuing the chain of reflections one obtains: point A_{2024} is symmetric to A_{2023} in respect to O_1 ,... point A_{4046} is symmetric to A_{4045} in respect to O_{2023} . Prove that point $|AA_{4046}| \leq \min_{\substack{i,j=1,2,\dots,2023\\i\neq j}} |O_iO_j|$

4. The surface of a melon has the form $x^4 + y^4 + z^4 = a^4$, a > 0. Is it possible to cut it by plane in such a way that the cross-section would be a circle? 5. A continuous function $f:[1,2] \rightarrow \mathbb{R}$ satisfies the inequalities

$$\left| \int_{1}^{2} f(x) x^{n} dx \right| < 2^{-1000n} \text{ for every } n = 1, 2, \dots \text{ Prove that } f \equiv 0.$$

6. Fyodor the robot prefers a positive integer *n* if $n^{2022} \ge w^{2023}$, where *w* is the product of all prime divisors of *n*. Is the sum of reciprocals of numbers preferred by Fyodor the robot finite or not?

7. Consider a regular 2023-gon inscribed in a circle of radius 2023. Let Ω be the set of all C^2 naturally parameterized simple (that is, non-self-intersecting) closed plane curves passing through all 2023 vertices of the polygon. Find the

infimum $\inf_{\gamma \in \Omega} \left\{ \oint_{\gamma} (\kappa_{\gamma}(s))^2 ds \right\}$, where $\kappa_{\gamma}(s)$ is the curvature of γ at the point with

parameter s.

Problems for NCUMC 2023 23.04.2023

1. Polynomial $P(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + 1$ with non-negative coefficients has *n* real roots. Prove that $P(2023) \ge 2024^n$.

2. Function f is twice continuously differentiable on the real axis and satisfies the relation f''(x) + xg(x)f'(x) + f(x) = 0, $\forall x$, where $g(x) \ge 0$. Prove that f(x) is bounded.

3. Let $A, O_1, O_2, ..., O_{2023}$ be 2024 points in \mathbb{R}^3 . Let point A_1 is symmetric to A in respect to O_1 , point A_2 is symmetric to A_1 in respect to O_2 , ... point A_{2023} is symmetric to A_{2022} in respect to O_{2023} , and, continuing the chain of reflections one obtains: point A_{2024} is symmetric to A_{2023} in respect to O_1 ,... point A_{4046} is symmetric to A_{4045} in respect to O_{2023} . Prove that point $|AA_{4046}| \leq \min_{\substack{i,j=1,2,...,2023\\i\neq j}} |O_iO_j|$

4. The surface of a melon has the form x⁴ + y⁴ + z⁴ = a⁴, a > 0. Is it possible to cut it by plane in such a way that the cross-section would be a circle?
5. A continuous function \f : [1,2] → ℝ satisfies the inequalities

$$\left| \int_{1}^{2} f(x) x^{n} dx \right| < 2^{-1000n} \text{ for every } n = 1, 2, \dots \text{ Prove that } f \equiv 0.$$

6. Fyodor the robot prefers a positive integer *n* if $n^{2022} \ge w^{2023}$, where *w* is the product of all prime divisors of *n*. Is the sum of reciprocals of numbers preferred by Fyodor the robot finite or not?

7. Consider a regular 2023-gon inscribed in a circle of radius 2023. Let Ω be the set of all C^2 naturally parameterized simple (that is, non-self-intersecting) closed plane curves passing through all 2023 vertices of the polygon. Find the

infimum $\inf_{\gamma \in \Omega} \left\{ \oint_{\gamma} (\kappa_{\gamma}(s))^2 ds \right\}$, where $\kappa_{\gamma}(s)$ is the curvature of γ at the point with

parameter s.

1. Polynomial $P(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + 1$ with non-negative coefficients has *n* real roots. Prove that $P(2023) \ge 2024^n$.

1. Solution. Coefficients of the polynomial are non-negative, the last coefficient equals one. It means that all roots x_k are negative. Пусть его корни $x_k = -b_k, b_k > 0, k = 1, 2, ...n$. Then $P(x) = (x+b_1)(x+b_2)...(x+b_n)$. The inequality between means gives one: $2023+b_k = 1+1+...+1+b_k \ge 2024 \frac{2024}{b_k}$. Correspondingly, $P(2023) \ge 2024^n \frac{2024}{b_1 \cdot b_2 \cdot ... \cdot b_n} = 2024^n$ due to the Viete theorem $(b_1 \cdot b_2 \cdot ... \cdot b_n = 1)$.

2. Function f is twice continuously differentiable on the real axis and satisfies the relation f''(x) + xg(x)f'(x) + f(x) = 0, $\forall x$, where $g(x) \ge 0$. Prove that f(x) is bounded.

2. Let us multiply the equation by 2f'(x) and integrate it over [0, x]. One obtains $(f'(x))^2 - (f'(0))^2 + (f(x))^2 - (f(0))^2 = -2\int_0^x t \cdot g(t) \cdot (f'(t))^2 dt$.

The right hand side of the equality is non-positive. Hence, $(f(x))^2 + (f'(x))^2 - (f(0))^2 - (f'(0))^2 \le 0$. As a result, one obtains the estimation $(f(x))^2 \le (f(x))^2 + (f'(x))^2 \le (f(0))^2 + (f'(0))^2$, which means that f(x) is bounded. 3. Let $A, O_1, O_2, ..., O_{2023}$ be 2024 points in \mathbb{R}^3 . Let point A_1 is symmetric to A in respect to O_1 , point A_2 is symmetric to A_1 in respect to O_2 , ... point A_{2023} is symmetric to A_{2022} in respect to O_{2023} , and, continuing the chain of reflections one obtains: point A_{2024} is symmetric to A_{2023} in respect to O_1 ,... point A_{4046} is symmetric to A_{4045} in respect to O_{2023} . Prove that point $|AA_{4046}| \leq \min_{\substack{i,j=1,2,\dots,2023\\ i\neq i}} |O_iO_j|$

3. Solution. Two consequent reflections in respect to points O_1 and O_2 gives one a shift to vector $2\overrightarrow{O_1O_2}$ due to the fact that O_1O_2 is the midline of a triangle ΔAA_1A_2 . Consequently, $\overrightarrow{AA_2} = 2\overrightarrow{O_1O_2}$. If A, A_1 and A_2 belong to one straight line the result is, evidently, the same. Thus, one has $\overrightarrow{AA_2} = 2\overrightarrow{O_1O_2}$, $\overrightarrow{A_2A_4} = 2\overrightarrow{O_3O_4}$, ... $\overrightarrow{A_{2020}A_{2022}} = 2\overrightarrow{O_{2021}O_{2022}}$, $\overrightarrow{A_{2022}A_{2024}} = 2\overrightarrow{O_{2023}O_1}$, $\overrightarrow{A_{2024}A_{2026}} = 2\overrightarrow{O_2O_3}$,.... $\overrightarrow{A_{4044}A_{4046}} = 2\overrightarrow{O_{2022}O_{2023}}$. Let us find $\overrightarrow{AA_{4046}} = \overrightarrow{AA_2} + \overrightarrow{A_2A_4} + ... + \overrightarrow{A_{4044}A_{4046}} = 2\overrightarrow{O_{2022}O_2}$, $\overrightarrow{A_2A_4} + ... + \overrightarrow{A_{4044}A_{4046}} = 2\overrightarrow{O_{2022}O_2} + 2\overrightarrow{O_{2023}O_1} + 2\overrightarrow{O_2O_3} + ... + 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{202}O_3} + ... + 2\overrightarrow{O_{2021}O_{2022}} + 2\overrightarrow{O_{2023}O_1} + 2\overrightarrow{O_{2023}O_1} + ... + 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{202}O_2} + 2\overrightarrow{O_{2022}O_2} + 2\overrightarrow{O_{2023}O_1} + 2\overrightarrow{O_{2023}O_1} + ... + 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{2023}O_1} = 2\overrightarrow{O_{2023}O_1} = 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{202}O_2} + 2\overrightarrow{O_{2021}O_{2022}} + 2\overrightarrow{O_{2023}O_1} + 2\overrightarrow{O_{2023}O_1} + 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{2022}O_{2023}} = 2\overrightarrow{O_{202}O_2} + 2\overrightarrow{O_{2022}O_{2023}} + 2\overrightarrow{O_{2023}O_1} + 2\overrightarrow{O_{2023}O_1} = 0$. Thus, $|AA_{4046}| = 0$. 4. The surface of a melon has the form $x^4 + y^4 + z^4 = a^4$, a > 0. Is it possible to cut it by plane in such a way that the cross-section would be a circle?

4. Answer. Yes. Consider the following circle: $\begin{cases} x + y + z = 0\\ x^2 + y^2 + z^2 = r^2 \end{cases}$ One has for the points of this circle $x + y = -z \Rightarrow x^2 + y^2 + 2xy = z^2, 2xy = z^2 - x^2 - y^2 = 2z^2 - r^2$. Hence, $x^4 + y^4 + z^4 = (x^2 + y^2)^2 - 2x^2y^2 + z^4 = (r^2 - z^2)^2 - \frac{1}{2}(2z^2 - r^2)^2 + z^4 = \frac{r^4}{2}.$ It means that the following circle $\begin{cases} x + y + z = 0, \\ x^2 + y^2 + z^2 = \sqrt{2}a^2 \end{cases}$ (with the radius $\sqrt[4]{2}a$ and the center at the origin) belongs to the surface $x^4 + y^4 + z^4 = a^4, a > 0$. 5. A continuous function $f: [1, 2] \to \mathbb{R}$ satisfies the inequalities $|\int_1^2 f(x)x^n dx| < 2^{-1000n}$ for every $n = 1, 2, \ldots$ Prove that $f \equiv 0$.

Solution

5. Put $\epsilon = 1/100000$, then $\int_0^1 f(x)x^n = O(\epsilon^n)$. **Lemma**. There exists a polynomial $p_n(x) = \sum_{k=n}^{10n} c_k x^k$ such that $\sum_{k=n}^{10n} |c_k| \epsilon^k =$ o(1) and $\max_{x \in [1,2]} |1 - p_n(x)| = o(1).$

First of all, I prove the claim using the polynomials from lemma. It suffices to prove that $\int_{1}^{2} f(x)x^{d}dx = 0$ for arbitrary non-negative integer d (then f is orthogonal to all polynomials, and by Weierstrass theorem is identical 0). We have

$$\int_{1}^{2} f(x)x^{d}dx = \int_{1}^{2} f(x)x^{d}(1-p_{n}(x))dx + \int_{1}^{2} f(x)x^{d}p_{n}(x)dx = o(1) + \sum_{k=n}^{10n} c_{k} \int_{1}^{2} f(x)x^{d+k}dx = o(1),$$

and the claim follows.

Proof of the lemma. Consider the Taylor approximation of degree 9n at point 3/2 of the function $F(x) := x^{-n}$:

$$x^{-n} = \sum_{k=0}^{9n} \frac{n(n+1)\cdots(n+k-1)}{k!} (3/2)^{-n-k} (x-3/2)^k + R_{9n}(x)$$

where the remainder term $R_{9n}(x) = \frac{F^{(9n+1)(\theta)}}{(9n+1)!}(x-3/2)^{9n+1}$ for an intermediate point θ between 3/2 and x enjoys on [1,2] the bound

$$|R_{9n}(x)| \leq (1/2)^{9n+1} \cdot \frac{n(n+1)\cdots(n+9n)}{(9n+1)!} = 2^{-9n-1} \binom{10n}{n-1} < 2^{-9n-1} \frac{(10n)^n}{n!} < (10e \cdot 2^{-9})^n < 3^{-n},$$

thus $x^n R_{9n}(x)$ is uniformly small on [1, 2]. Put

$$p_n(x) = x^n \sum_{k=0}^{9n} \frac{n(n+1)\cdots(n+k-1)}{k!} (3/2)^{-n-k} (x-3/2)^k = \sum_{k=n}^{10n} c_n x^n.$$

We have

$$\sum_{k=n}^{10n} |c_n| \epsilon^n \leqslant \epsilon^n \sum_{k=0}^{9n} \frac{n(n+1)\cdots(n+k-1)}{k!} (3/2)^{-n-k} (\epsilon+3/2)^k$$

< $\epsilon^n (3/2)^{-n} \sum_{k=0}^{9n} \binom{n+k-1}{k} \cdot 2^k < \epsilon^n (3/2)^{-n} \sum_{k=0}^{9n} (1+2)^{n+k-1} = o(1)$

as needed.

2. Fyodor the robot prefers a positive integer n if $n^{2022} \ge w^{2023}$, where w is the product of all prime divisors of n. Is the sum of reciprocals of numbers preferred by Fyodor the robot finite or not?

Solution

2. The sum converges. Fix $w = p_1 \dots p_k$, where p_i are all distinct prime divisors of n. Denote by Ω the set of positive integers with all prime divisors in $\{p_1, \dots, p_k\}$. Then n = wQ where $Q \in \Omega$ and $Q \ge w^{1/2023}$. For $s \in (0, 1)$ we have

$$\prod_{i=1}^{k} (1-p^{s-1})^{-1} = \prod_{i=1}^{k} (1+p^{s-1}+p^{2(s-1)}+\ldots) = \sum_{Q \in \Omega} Q^{s-1} \ge w^{s/2023} \sum_{Q \in \Omega, Q \ge w^{1/2023}} Q^{-1}.$$

Thus

$$\sum_{Q \in \Omega, Q \geqslant w^{1/2023}} Q^{-1} \leqslant \prod_{i=1}^{k} p_i^{-s/2023} (1-p_i^{s-1})^{-1} = \prod_{i=1}^{k} (p_i^{s/2023} - p_i^{s/2023+s-1})^{-1}.$$

From now we fix s = 1/2. We get

$$\sum_{\substack{n \text{ preferred by FtR}}} n^{-1} \leqslant$$
$$\sum_{p_1,\dots,p_k} \prod_{i=1}^k \frac{1}{p_i(p_i^{1/4046} - p_i^{1/4046 - 1/2})} = \prod_p \left(1 + \frac{1}{p(p^{1/4046} - p^{1/4046 - 1/2})}\right) < \infty,$$

since $1 + x < e^x$ for $x = (p(p^{1/4046} - p^{1/4046 - 1/2}))^{-1}$, and the sum of $(p(p^{1/4046} - p^{1/4046 - 1/2}))^{-1}$ is finite even taken over all integers p > 1, not necessarily prime.

1

Problem 7.

Consider a regular 2023-gon inscribed in a circle of radius 2023. Let Ω be the set of all C^2 naturally parametrized simple (that is, non-self-intersecting) closed plane curves passing through all 2023 vertices of the polygon. Find the infimum

$$\inf\left\{\oint_{\gamma}\kappa_{\gamma}(s)^{2}\,ds:\gamma\in\Omega\right\},\,$$

where $\kappa_{\gamma}(s)$ is the curvature of γ at the point with parameter s.

Answer: 0.

Solution.

We are going to construct a curve $\gamma \in \Omega$ having an arbitrarily small value of the above integral. The curve will consist of line segments (with the above integral equal to zero) and special curve arcs defined by $\kappa_{\gamma}(s) = \lambda s(D-s), s \in [0; D]$, where the constant λ is chosen so that the angle between the tangent vectors at the end points is equal to $\pi/2$:

$$\int_0^D \kappa_\gamma(s) ds = \lambda \int_0^D s(D-s) ds = \frac{\lambda D^3}{6} = \pm \frac{\pi}{2}, \text{ whence } \lambda = \pm 3\pi D^{-3}.$$

If the special arc has a horizontal or vertical tangent vector at one of its endpoints, then the horizontal and vertical changes between end-points are equal and are denoted by W_D or just W.

Note that

$$\int_0^D \kappa_\gamma(s)^2 ds = \lambda^2 \int_0^D s^2 (D-s)^2 ds = \frac{\lambda^2 D^5}{30} = 0.3\pi^2 D^{-1}.$$

So, the greater is D, the longer is the arc, but the smaller is the integral of its curvature squared.

Since such arcs have zero curvature at their end-points, they can be joined to form a C^2 curve. The same holds when joining such an arc with a line segment.

We enumerate the vertices as p_1, \ldots, p_{2023} when passing them clockwise along the circumscribed circle and suppose that the edge $[p_1, p_2]$ is horizontal and above all other vertices. The curve to be constructed will pass the vertices in the following order:

$p_1, p_2, p_3, p_{2023}, p_{2022}, p_4, p_5, p_{2021}, \ldots, p_{1014}, p_{1012}, p_{1013}, p_1.$

The first part of the curve, from p_1 to p_2 , is a horizontal line segment, as well as all parts from p_{2k+1} to $p_{2025-2k}$ and from $p_{2024-2k}$ to p_{2k+2} , $k = 1, \ldots, 505$.

Now we describe the second part, from p_2 to p_3 , supposing W > R = 2023 (see the figure below).

This part consists successively of:

1,2,3) three special arcs turning up, right and down,

4) a vertical line segment of length equal to the vertical change between p_2 and p_3 ,

5) a special arc turning left,

6) a horizontal line segment with the second end-point p_3 .

All parts from p_{2k} to p_{2k+1} , where k =

 $2, \ldots, 506$, begin with a horizontal line segment having its second end-point located to the right of all parts constructed before (in order to avoid self-intersections). The segment is followed by similar arcs (1, 2, 3, 5) as in the above part and two segments (4 and 6) of lengths making the part to finish at p_{2k+1} .

All parts from p_{2k+1} to p_{2k} , $k = 1011, \ldots, 507$, are constructed in the similar way, but are located to the left of the polygon vertices.

Finally, the part from p_{1013} to p_1 consists of:

1) a horizontal line segment with its second end-point located to the left of all parts constructed before,

2) a special arc turning up,

3) a vertical line segment with its second end-point having W of vertical change above p_1 ,

4) a special arc turning right,

5) a horizontal line segment with its second end-point having 2W of horizontal change to the left of p_1 ,

(6,7) two special arcs turning down and right, just to p_1 .

For illustration, see the figure below related to an 11-gon.

