1. Polynomial $P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+1$ with non-negative coefficients has n real roots. Prove that $P(2023) \geq 2024^{n}$.
2. Function f is twice continuously differentiable on the real axis and satisfies the relation $f^{\prime \prime}(x)+x g(x) f^{\prime}(x)+f(x)=0, \forall x$, where $g(x) \geq 0$. Prove that $f(x)$ is bounded.
3. Let $A, O_{1}, O_{2}, \ldots O_{2023}$ be 2024 points in \mathbb{R}^{3}. Let point A_{1} is symmetric to A in respect to O_{1}, point A_{2} is symmetric to A_{1} in respect to O_{2}, \ldots point A_{2023} is symmetric to A_{2022} in respect to O_{2023}, and, continuing the chain of reflections one obtains: point A_{2024} is symmetric to A_{2023} in respect to O_{1}, \ldots point A_{4046} is symmetric to A_{4045} in respect to O_{2023}. Prove that point $\left|A A_{4046}\right| \leq \min _{\substack{i, j=1,2,2023 \\ i \neq j}}\left|O_{i} O_{j}\right|$
4. The surface of a melon has the form $x^{4}+y^{4}+z^{4}=a^{4}, a>0$. Is it possible to cut it by plane in such a way that the cross-section would be a circle?
5. A continuous function $f:[1,2] \rightarrow \mathbb{R}$ satisfies the inequalities
$\left|\int_{1}^{2} f(x) x^{n} d x\right|<2^{-1000 n}$ for every $n=1,2, \ldots$ Prove that $f \equiv 0$.
6. Fyodor the robot prefers a positive integer n if $n^{2022} \geq w^{2023}$, where w is the product of all prime divisors of n. Is the sum of reciprocals of numbers preferred by Fyodor the robot finite or not?
7. Consider a regular 2023-gon inscribed in a circle of radius 2023. Let Ω be the set of all C^{2} naturally parameterized simple (that is, non-self-intersecting) closed plane curves passing through all 2023 vertices of the polygon. Find the $\operatorname{infimum} \inf _{\gamma \in \Omega}\left\{\oint_{\gamma}\left(\kappa_{\gamma}(s)\right)^{2} d s\right\}$, where $\kappa_{\gamma}(s)$ is the curvature of γ at the point with parameter s.

Problems for NCUMC 2023

23.04.2023

1. Polynomial $P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+1$ with non-negative coefficients has n real roots. Prove that $P(2023) \geq 2024^{n}$.
2. Function f is twice continuously differentiable on the real axis and satisfies the relation $f^{\prime \prime}(x)+x g(x) f^{\prime}(x)+f(x)=0, \forall x$, where $g(x) \geq 0$. Prove that $f(x)$ is bounded.
3. Let $A, O_{1}, O_{2}, \ldots O_{2023}$ be 2024 points in \mathbb{R}^{3}. Let point A_{1} is symmetric to A in respect to O_{1}, point A_{2} is symmetric to A_{1} in respect to O_{2}, \ldots point A_{2023} is symmetric to A_{2022} in respect to O_{2023}, and, continuing the chain of reflections one obtains: point A_{2024} is symmetric to A_{2023} in respect to O_{1}, \ldots point A_{4046} is symmetric to A_{4045} in respect to O_{2023}. Prove that point $\left|A A_{4046}\right| \leq \min _{\substack{i, j, 1,2, \ldots 223 \\ i \neq j}}\left|O_{i} O_{j}\right|$
4. The surface of a melon has the form $x^{4}+y^{4}+z^{4}=a^{4}, a>0$. Is it possible to cut it by plane in such a way that the cross-section would be a circle?
5. A continuous function $\backslash f:[1,2] \rightarrow \mathbb{R}$ satisfies the inequalities
$\left|\int_{1}^{2} f(x) x^{n} d x\right|<2^{-1000 n}$ for every $n=1,2, \ldots$ Prove that $f \equiv 0$.
6. Fyodor the robot prefers a positive integer n if $n^{2022} \geq w^{2023}$, where w is the product of all prime divisors of n. Is the sum of reciprocals of numbers preferred by Fyodor the robot finite or not?
7. Consider a regular 2023-gon inscribed in a circle of radius 2023. Let Ω be the set of all C^{2} naturally parameterized simple (that is, non-self-intersecting) closed plane curves passing through all 2023 vertices of the polygon. Find the $\operatorname{infimum} \inf _{\gamma \in \Omega}\left\{\oint_{\gamma}\left(\kappa_{\gamma}(s)\right)^{2} d s\right\}$, where $\kappa_{\gamma}(s)$ is the curvature of γ at the point with parameter s.
8. Polynomial $P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+1$ with non-negative coefficients has n real roots. Prove that $P(2023) \geq 2024^{n}$.
9. Solution. Coefficients of the polynomial are non-negative, the last coefficient equals one. It means that all roots x_{k} are negative. Пусть его корни $x_{k}=-b_{k}, b_{k}>0, k=1,2, \ldots n$. Then $P(x)=\left(x+b_{1}\right)\left(x+b_{2}\right) \ldots\left(x+b_{n}\right)$. The inequality between means gives one: $2023+b_{k}=1+1+\ldots+1+b_{k} \geq 2024 \sqrt[2024]{b_{k}}$. Correspondingly, $P(2023) \geq 2024^{n} \sqrt[2024]{b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}}=2024^{n}$ due to the Viete theorem $\left(b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}=1\right)$.
10. Function f is twice continuously differentiable on the real axis and satisfies the relation $f^{\prime \prime}(x)+x g(x) f^{\prime}(x)+f(x)=0, \forall x$, where $g(x) \geq 0$. Prove that $f(x)$ is bounded.
11. Let us multiply the equation by $2 f^{\prime}(x)$ and integrate it over [0, x]. One obtains $\left(f^{\prime}(x)\right)^{2}-\left(f^{\prime}(0)\right)^{2}+(f(x))^{2}-(f(0))^{2}=-2 \int_{0}^{x} t \cdot g(t) \cdot\left(f^{\prime}(t)\right)^{2} d t$.
The right hand side of the equality is non-positive. Hence, $(f(x))^{2}+\left(f^{\prime}(x)\right)^{2}-(f(0))^{2}-\left(f^{\prime}(0)\right)^{2} \leq 0$. As a result, one obtains the estimation $(f(x))^{2} \leq(f(x))^{2}+\left(f^{\prime}(x)\right)^{2} \leq(f(0))^{2}+\left(f^{\prime}(0)\right)^{2}$, which means that $f(x)$ is bounded.
12. Let $A, O_{1}, O_{2}, \ldots O_{2023}$ be 2024 points in \mathbb{R}^{3}. Let point A_{1} is symmetric to A in respect to O_{1}, point A_{2} is symmetric to A_{1} in respect to O_{2}, \ldots point A_{2023} is symmetric to A_{2022} in respect to O_{2023}, and, continuing the chain of reflections one obtains: point A_{2024} is symmetric to A_{2023} in respect to O_{1}, \ldots point A_{4046} is symmetric to A_{4045} in respect to O_{2023}. Prove that point $\left|A A_{4046}\right| \leq \min _{\substack{i, j=1,2,2023 \\ i \neq j}}\left|O_{i} O_{j}\right|$
13. Solution. Two consequent reflections in respect to points O_{1} and O_{2} gives one a shift to vector $2 \overrightarrow{O_{1} O_{2}}$ due to the fact that $O_{1} O_{2}$ is the midline of a triangle $\Delta A A_{1} A_{2}$. Consequently, $\overrightarrow{A A_{2}}=2 \overrightarrow{O_{1} O_{2}}$. If A, A_{1} and A_{2} belong to one straight line the result is, evidently, the same. Thus, one has $\overrightarrow{A A_{2}}=2 \overrightarrow{O_{1} O_{2}}, \overrightarrow{A_{2} A_{4}}=2 \overrightarrow{O_{3} O_{4}}, \ldots$ $\overrightarrow{A_{2020} A_{2022}}=2 \overrightarrow{O_{2021} O_{2022}}, \quad \overrightarrow{A_{2022} A_{2024}}=2 \overrightarrow{O_{2023} O_{1}}, \quad \overrightarrow{A_{2024} A_{2026}}=2 \overrightarrow{O_{2} O_{3}}, \ldots$
$\overrightarrow{A_{4004} A_{4046}}=2 \overline{O_{2022} O_{2023}}$. Let us find
$\overrightarrow{A A_{4046}}=\overrightarrow{A A_{2}}+\overrightarrow{A_{2} A_{4}}+\ldots+\overrightarrow{A_{4044} A_{4046}}=$
$=2 \overrightarrow{O_{1} O_{2}}+2 \overrightarrow{O_{3} O_{4}}+\ldots+2 \overrightarrow{O_{2021} O_{2022}}+2 \overrightarrow{O_{2023} O_{1}}+2 \overrightarrow{O_{2} O_{3}}+\ldots+2 \overrightarrow{O_{2022} O_{2023}}=$
$=2\left(\overrightarrow{O_{1} O_{2}}+\overrightarrow{O_{2} O_{3}}+\overrightarrow{O_{2} O_{3}}+\ldots+2 \overrightarrow{O_{2022} O_{2023}}+2 \overrightarrow{O_{2023} O_{1}}\right)=\overrightarrow{0}$.
Thus, $\left|A A_{4046}\right|=0$.
14. The surface of a melon has the form $x^{4}+y^{4}+z^{4}=a^{4}, a>0$. Is it possible to cut it by plane in such a way that the cross-section would be a circle?
15. Answer. Yes. Consider the following circle: $\left\{\begin{array}{l}x+y+z=0 \\ x^{2}+y^{2}+z^{2}=r^{2}\end{array}\right.$. One has for the points of this circle $x+y=-z \Rightarrow x^{2}+y^{2}+2 x y=z^{2}, 2 x y=z^{2}-x^{2}-y^{2}=2 z^{2}-r^{2}$. Hence, $x^{4}+y^{4}+z^{4}=\left(x^{2}+y^{2}\right)^{2}-2 x^{2} y^{2}+z^{4}=\left(r^{2}-z^{2}\right)^{2}-\frac{1}{2}\left(2 z^{2}-r^{2}\right)^{2}+z^{4}=\frac{r^{4}}{2} . \quad$ It means that the following circle $\left\{\begin{array}{l}x+y+z=0, \\ x^{2}+y^{2}+z^{2}=\sqrt{2} a^{2}\end{array}\right.$ (with the radius $\sqrt[4]{2} a$ and the center at the origin) belongs to the surface $x^{4}+y^{4}+z^{4}=a^{4}, a>0$.
16. A continuous function $f:[1,2] \rightarrow \mathbb{R}$ satisfies the inequalities $\left|\int_{1}^{2} f(x) x^{n} d x\right|<$ $2^{-1000 n}$ for every $n=1,2, \ldots$. Prove that $f \equiv 0$.

Solution
5. Put $\epsilon=1 / 100000$, then $\int_{0}^{1} f(x) x^{n}=O\left(\epsilon^{n}\right)$.

Lemma. There exists a polynomial $p_{n}(x)=\sum_{k=n}^{10 n} c_{k} x^{k}$ such that $\sum_{k=n}^{10 n}\left|c_{k}\right| \epsilon^{k}=$ $o(1)$ and $\max _{x \in[1,2]}\left|1-p_{n}(x)\right|=o(1)$.

First of all, I prove the claim using the polynomials from lemma. It suffices to prove that $\int_{1}^{2} f(x) x^{d} d x=0$ for arbitrary non-negative integer d (then f is orthogonal to all polynomials, and by Weierstrass theorem is identical 0). We have
$\int_{1}^{2} f(x) x^{d} d x=\int_{1}^{2} f(x) x^{d}\left(1-p_{n}(x)\right) d x+\int_{1}^{2} f(x) x^{d} p_{n}(x) d x=o(1)+\sum_{k=n}^{10 n} c_{k} \int_{1}^{2} f(x) x^{d+k} d x=o(1)$,
and the claim follows.
Proof of the lemma. Consider the Taylor approximation of degree $9 n$ at point $3 / 2$ of the function $F(x):=x^{-n}$:

$$
x^{-n}=\sum_{k=0}^{9 n} \frac{n(n+1) \cdots(n+k-1)}{k!}(3 / 2)^{-n-k}(x-3 / 2)^{k}+R_{9 n}(x)
$$

where the remainder term $R_{9 n}(x)=\frac{F^{(9 n+1)(\theta)}}{(9 n+1)!}(x-3 / 2)^{9 n+1}$ for an intermediate point θ between $3 / 2$ and x enjoys on [1,2] the bound
$\left|R_{9 n}(x)\right| \leqslant(1 / 2)^{9 n+1} \cdot \frac{n(n+1) \cdots(n+9 n)}{(9 n+1)!}=2^{-9 n-1}\binom{10 n}{n-1}<2^{-9 n-1} \frac{(10 n)^{n}}{n!}<\left(10 e \cdot 2^{-9}\right)^{n}<3^{-n}$,
thus $x^{n} R_{9 n}(x)$ is uniformly small on $[1,2]$. Put

$$
p_{n}(x)=x^{n} \sum_{k=0}^{9 n} \frac{n(n+1) \cdots(n+k-1)}{k!}(3 / 2)^{-n-k}(x-3 / 2)^{k}=\sum_{k=n}^{10 n} c_{n} x^{n} .
$$

We have

$$
\begin{gathered}
\sum_{k=n}^{10 n}\left|c_{n}\right| \epsilon^{n} \leqslant \epsilon^{n} \sum_{k=0}^{9 n} \frac{n(n+1) \cdots(n+k-1)}{k!}(3 / 2)^{-n-k}(\epsilon+3 / 2)^{k} \\
<\epsilon^{n}(3 / 2)^{-n} \sum_{k=0}^{9 n}\binom{n+k-1}{k} \cdot 2^{k}<\epsilon^{n}(3 / 2)^{-n} \sum_{k=0}^{9 n}(1+2)^{n+k-1}=o(1)
\end{gathered}
$$

as needed.
2. Fyodor the robot prefers a positive integer n if $n^{2022} \geqslant w^{2023}$, where w is the product of all prime divisors of n. Is the sum of reciprocals of numbers preferred by Fyodor the robot finite or not?

Solution
2. The sum converges. Fix $w=p_{1} \ldots p_{k}$, where p_{i} are all distinct prime divisors of n. Denote by Ω the set of positive integers with all prime divisors in $\left\{p_{1}, \ldots, p_{k}\right\}$. Then $n=w Q$ where $Q \in \Omega$ and $Q \geqslant w^{1 / 2023}$. For $s \in(0,1)$ we have

$$
\prod_{i=1}^{k}\left(1-p^{s-1}\right)^{-1}=\prod_{i=1}^{k}\left(1+p^{s-1}+p^{2(s-1)}+\ldots\right)=\sum_{Q \in \Omega} Q^{s-1} \geqslant w^{s / 2023} \sum_{Q \in \Omega, Q \geqslant w^{1 / 2023}} Q^{-1}
$$

Thus

$$
\sum_{Q \in \Omega, Q \geqslant w^{1 / 2023}} Q^{-1} \leqslant \prod_{i=1}^{k} p_{i}^{-s / 2023}\left(1-p_{i}^{s-1}\right)^{-1}=\prod_{i=1}^{k}\left(p_{i}^{s / 2023}-p_{i}^{s / 2023+s-1}\right)^{-1}
$$

From now we fix $s=1 / 2$. We get

$$
\sum_{n \text { preferred by FtR }} n^{-1} \leqslant
$$

$\sum_{p_{1}, \ldots, p_{k}} \prod_{i=1}^{k} \frac{1}{p_{i}\left(p_{i}^{1 / 4046}-p_{i}^{1 / 4046-1 / 2}\right)}=\prod_{p}\left(1+\frac{1}{p\left(p^{1 / 4046}-p^{1 / 4046-1 / 2}\right)}\right)<\infty$,
since $1+x<e^{x}$ for $x=\left(p\left(p^{1 / 4046}-p^{1 / 4046-1 / 2}\right)\right)^{-1}$, and the sum of $\left(p\left(p^{1 / 4046}-\right.\right.$ $\left.\left.p^{1 / 4046-1 / 2}\right)\right)^{-1}$ is finite even taken over all integers $p>1$, not necessarily prime.

Problem 7.

Consider a regular 2023-gon inscribed in a circle of radius 2023 . Let Ω be the set of all C^{2} naturally parametrized simple (that is, non-self-intersecting) closed plane curves passing through all 2023 vertices of the polygon. Find the infimum

$$
\inf \left\{\oint_{\gamma} \kappa_{\gamma}(s)^{2} d s: \gamma \in \Omega\right\}
$$

where $\kappa_{\gamma}(s)$ is the curvature of γ at the point with parameter s.

Answer: 0.

Solution.

We are going to construct a curve $\gamma \in \Omega$ having an arbitrarily small value of the above integral. The curve will consist of line segments (with the above integral equal to zero) and special curve arcs defined by $\kappa_{\gamma}(s)=\lambda s(D-s), \quad s \in[0 ; D]$, where the constant λ is chosen so that the angle between the tangent vectors at the end points is equal to $\pi / 2$:

$$
\int_{0}^{D} \kappa_{\gamma}(s) d s=\lambda \int_{0}^{D} s(D-s) d s=\frac{\lambda D^{3}}{6}= \pm \frac{\pi}{2}, \quad \text { whence } \lambda= \pm 3 \pi D^{-3} .
$$

If the special arc has a horizontal or vertical tangent vector at one of its endpoints, then the horizontal and vertical changes between end-points are equal and are denoted by W_{D} or just W.

Note that

$$
\int_{0}^{D} \kappa_{\gamma}(s)^{2} d s=\lambda^{2} \int_{0}^{D} s^{2}(D-s)^{2} d s=\frac{\lambda^{2} D^{5}}{30}=0.3 \pi^{2} D^{-1}
$$

So, the greater is D, the longer is the arc, but the smaller is the integral of its curvature squared.

Since such arcs have zero curvature at their end-points, they can be joined to form a C^{2} curve. The same holds when joining such an arc with a line segment.

We enumerate the vertices as p_{1}, \ldots, p_{2023} when passing them clockwise along the circumscribed circle and suppose that the edge $\left[p_{1}, p_{2}\right]$ is horizontal and above all other vertices. The curve to be constructed will pass the vertices in the following order:

$$
p_{1}, p_{2}, p_{3}, p_{2023}, p_{2022}, p_{4}, p_{5}, p_{2021}, \ldots, p_{1014}, p_{1012}, p_{1013}, p_{1}
$$

The first part of the curve, from p_{1} to p_{2}, is a horizontal line segment, as well as all parts from $p_{2 k+1}$ to $p_{2025-2 k}$ and from $p_{2024-2 k}$ to $p_{2 k+2}, k=1, \ldots, 505$.

Now we describe the second part, from p_{2} to p_{3}, supposing $W>R=2023$ (see the figure below).

This part consists successively of:
$1,2,3$) three special arcs turning up, right and down,
4) a vertical line segment of length equal to the vertical change between p_{2} and p_{3},
5) a special arc turning left,
6) a horizontal line segment with the second
 end-point p_{3}.

All parts from $p_{2 k}$ to $p_{2 k+1}$, where $k=$ $2, \ldots, 506$, begin with a horizontal line segment having its second end-point located to the right of all parts constructed before (in order to avoid self-intersections). The segment is followed by similar arcs $(1,2,3,5)$ as in the above part and two segments (4 and 6) of lengths making the part to finish at $p_{2 k+1}$.

All parts from $p_{2 k+1}$ to $p_{2 k}, k=1011, \ldots, 507$, are constructed in the similar way, but are located to the left of the polygon vertices.

Finally, the part from p_{1013} to p_{1} consists of:

1) a horizontal line segment with its second end-point located to the left of all parts constructed before,
2) a special arc turning up,
3) a vertical line segment with its second end-point having W of vertical change above p_{1},
4) a special arc turning right,
5) a horizontal line segment with its second end-point having $2 W$ of horizontal change to the left of p_{1},
$6,7)$ two special arcs turning down and right, just to p_{1}.
For illustration, see the figure below related to an 11-gon.

