Problems for NCUMC 2024

21.04.2024

1. Find all continuous on \mathbb{R} functions f which satisfy the relation $f(x+2024)=\frac{1+f(x)}{1-f(x)}, \forall x \in \mathbb{R}$.
2. Polynomial $P(x)=x^{2024}+c_{2022} x^{2022}+c_{2021} x^{2021}+\ldots+c_{0}$ has 2024 real roots $b_{1}<b_{2}<\ldots<b_{2024}$. Let us construct the infinite sequence by repeating these numbers $b_{1}, b_{2}, \ldots, b_{2024}, b_{1}, b_{2}, \ldots, b_{2024}, b_{1}, b_{2}, \ldots, b_{2024}, \ldots$ Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of roots of the equation $\sqrt{x} \sin x=1$ taken in increasing order. Does the series $\sum_{n=1}^{\infty} b_{n} \sin a_{n}$ converge?
3. Is it true that for any continuously differentiable on [0,1] function f the following inequality holds: $\left|f\left(\frac{1}{2}\right)\right| \leq \int_{0}^{1}|f(x)| d x+\frac{1}{2} \int_{0}^{1}\left|f^{\prime}(x)\right| d x$?
4. Consider the two-dimensional dynamical system $\dot{x}=f(x)$ with polynomial right-hand side. Let $x_{\varphi}(t)$ be the solution to the system maximally extended to the right and satisfying the initial condition $x_{\varphi}(0)=(\cos \varphi, \sin \varphi)$. For all $\varphi \in(-\pi, \pi)$ the solution $x_{\varphi}(t)$ tends to 0 as $t \rightarrow+\infty$. Which options are possible for the solution $x_{\pi}(t)$:
a) not to tend to 0 as $t \rightarrow+\infty$;
b) be unbounded for $t \geq 0$;
c) be unextensible onto $[0,+\infty)$?
5. Let n be a given positive integer. Find the minimal d such that for all distinct complex numbers $z_{1}, \ldots z_{n}$ there exists a complex polynomial $p(z)$ of degree d such that $\left|p\left(z_{1}\right)\right|>\max _{1<j \leq n}\left|p\left(z_{j}\right)\right|$?
6. A sequence $0<a_{1}<a_{2}<\ldots$ and positive number C are chosen so that $\left|e^{i a_{1}}+e^{i a_{2}}+\ldots+e^{i a_{n}}\right| \leq C$ for all positive integer n. Prove that $a_{n} \geq \frac{n}{2 C}-2$ for all n.
7. Let the facets of an n-dimensional simplex be given by the equations $a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots a_{i n} x_{n}+a_{i, n+1}=0, i=\overline{1, n+1}$. Prove that the volume of the simplex is $V_{n}=\frac{1}{n!}\left|\frac{\Delta^{n}}{\Delta_{1} \Delta_{2} \ldots \Delta_{n+1}}\right|$, where $\Delta=\operatorname{det}\left(a_{i j}\right), \Delta_{i}$ is the algebraic complement of element $a_{i, n+1}, i=\overline{1, n+1}$.

Problems for NCUMC 2024

21.04.2024

1. Find all continuous on \mathbb{R} functions f which satisfy the relation $f(x+2024)=\frac{1+f(x)}{1-f(x)}, \forall x \in \mathbb{R}$.
2. Polynomial $P(x)=x^{2024}+c_{2022} x^{2022}+c_{2021} x^{2021}+\ldots+c_{0}$ has 2024 real roots $b_{1}<b_{2}<\ldots<b_{2024}$. Let us construct the infinite sequence by repeating these numbers $b_{1}, b_{2}, \ldots, b_{2024}, b_{1}, b_{2}, \ldots, b_{2024}, b_{1}, b_{2}, \ldots, b_{2024}, \ldots$ Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of roots of the equation $\sqrt{x} \sin x=1$ taken in increasing order. Does the series $\sum_{n=1}^{\infty} b_{n} \sin a_{n}$ converge?
3. Is it true that for any continuously differentiable on [0,1] function f the following inequality holds: $\left|f\left(\frac{1}{2}\right)\right| \leq \int_{0}^{1}|f(x)| d x+\frac{1}{2} \int_{0}^{1}\left|f^{\prime}(x)\right| d x$?
4. Consider the two-dimensional dynamical system $\dot{x}=f(x)$ with polynomial right-hand side. Let $x_{\varphi}(t)$ be the solution to the system maximally extended to the right and satisfying the initial condition $x_{\varphi}(0)=(\cos \varphi, \sin \varphi)$. For all $\varphi \in(-\pi, \pi)$ the solution $x_{\varphi}(t)$ tends to 0 as $t \rightarrow+\infty$. Which options are possible for the solution $x_{\pi}(t)$:
a) not to tend to 0 as $t \rightarrow+\infty$;
b) be unbounded for $t \geq 0$;
c) be unextensible onto $[0,+\infty)$?
5. Let n be a given positive integer. Find the minimal d such that for all distinct complex numbers $z_{1}, \ldots z_{n}$ there exists a complex polynomial $p(z)$ of degree d such that $\left|p\left(z_{1}\right)\right|>\max _{1<j \leq n}\left|p\left(z_{j}\right)\right|$?
6. A sequence $0<a_{1}<a_{2}<\ldots$ and positive number C are chosen so that $\left|e^{i a_{1}}+e^{i a_{2}}+\ldots+e^{i a_{n}}\right| \leq C$ for all positive integer n. Prove that $a_{n} \geq \frac{n}{2 C}-2$ for all n.
7. Let the facets of an n-dimensional simplex be given by the equations $a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots a_{i n} x_{n}+a_{i, n+1}=0, i=\overline{1, n+1}$. Prove that the volume of the simplex is $V_{n}=\frac{1}{n!}\left|\frac{\Delta^{n}}{\Delta_{1} \Delta_{2} \ldots \Delta_{n+1}}\right|$, where $\Delta=\operatorname{det}\left(a_{i j}\right), \Delta_{i}$ is the algebraic complement of element $a_{i, n+1}, i=\overline{1, n+1}$.
