Problems for NCUMC 2024 21.04.2024

1. Find all continuous on \mathbb{R} functions f which satisfy the relation $f(x+2024) = \frac{1+f(x)}{1-f(x)}, \forall x \in \mathbb{R}.$

2. Polynomial $P(x) = x^{2024} + c_{2022}x^{2022} + c_{2021}x^{2021} + \dots + c_0$ has 2024 real roots $b_1 < b_2 < \dots < b_{2024}$. Let us construct the infinite sequence by repeating these numbers $b_1, b_2, \dots, b_{2024}, b_1, b_2, \dots, b_{2024}, b_1, b_2, \dots, b_{2024}, \dots$ Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of roots of the equation $\sqrt{x} \sin x = 1$ taken in increasing order. Does the series $\sum_{n=1}^{\infty} b_n \sin a_n$ converge?

3. Is it true that for any continuously differentiable on [0,1] function f the following inequality holds: $\left| f(\frac{1}{2}) \right| \le \int_{0}^{1} |f(x)| dx + \frac{1}{2} \int_{0}^{1} |f'(x)| dx$?

4. Consider the two-dimensional dynamical system $\dot{x} = f(x)$ with polynomial right-hand side. Let $x_{\varphi}(t)$ be the solution to the system maximally extended to the right and satisfying the initial condition $x_{\varphi}(0) = (\cos \varphi, \sin \varphi)$. For all $\varphi \in (-\pi, \pi)$ the solution $x_{\varphi}(t)$ tends to 0 as $t \to +\infty$. Which options are possible for the solution $x_{\pi}(t)$:

a) not to tend to 0 as $t \rightarrow +\infty$;

- b) be unbounded for $t \ge 0$;
- c) be unextensible onto $[0, +\infty)$?

5. Let n be a given positive integer. Find the minimal *d* such that for all distinct complex numbers $z_1,...,z_n$ there exists a complex polynomial p(z) of degree *d* such that $|p(z_1)| > \max_{1 \le j \le n} |p(z_j)|$?

6. A sequence $0 < a_1 < a_2 < \dots$ and positive number C are chosen so that

 $|e^{ia_1} + e^{ia_2} + \dots + e^{ia_n}| \le C$ for all positive integer *n*. Prove that $a_n \ge \frac{n}{2C} - 2$ for all *n*.

7. Let the facets of an n-dimensional simplex be given by the equations $a_{i1}x_1 + a_{i2}x_2 + ... a_{in}x_n + a_{i,n+1} = 0, i = \overline{1, n+1}$. Prove that the volume of the simplex is $V_n = \frac{1}{n!} \left| \frac{\Delta^n}{\Delta_1 \Delta_2 ... \Delta_{n+1}} \right|$, where $\Delta = \det(a_{ij})$, Δ_i is the algebraic complement of element $a_{i,n+1}, i = \overline{1, n+1}$.

Problems for NCUMC 2024 21.04.2024

1. Find all continuous on \mathbb{R} functions f which satisfy the relation $f(x+2024) = \frac{1+f(x)}{1-f(x)}, \forall x \in \mathbb{R}.$

2. Polynomial $P(x) = x^{2024} + c_{2022}x^{2022} + c_{2021}x^{2021} + \dots + c_0$ has 2024 real roots $b_1 < b_2 < ... < b_{2024}$. Let us construct the infinite sequence by repeating these numbers $b_1, b_2, \dots, b_{2024}, b_1, b_2, \dots, b_{2024}, b_1, b_2, \dots, b_{2024}, \dots$ Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of roots of the equation $\sqrt{x} \sin x = 1$ taken in increasing order. Does the series $\sum b_n \sin a_n$ converge?

3. Is it true that for any continuously differentiable on [0,1] function f the following inequality holds: $\left| f(\frac{1}{2}) \right| \leq \int_{0}^{1} |f(x)| dx + \frac{1}{2} \int_{0}^{1} |f'(x)| dx$?

4. Consider the two-dimensional dynamical system $\dot{x} = f(x)$ with polynomial right-hand side. Let $x_{\varphi}(t)$ be the solution to the system maximally extended to the right and satisfying the initial condition $x_{\varphi}(0) = (\cos \varphi, \sin \varphi)$. For all $\varphi \in (-\pi, \pi)$ the solution $x_{\varphi}(t)$ tends to 0 as $t \to +\infty$. Which options are possible for the solution $x_{\pi}(t)$:

a) not to tend to 0 as $t \rightarrow +\infty$;

- b) be unbounded for $t \ge 0$;
- c) be unextensible onto $[0, +\infty)$?

5. Let n be a given positive integer. Find the minimal d such that for all distinct complex numbers $z_1,...,z_n$ there exists a complex polynomial p(z) of degree d such that $|p(z_1)| > \max_{1 < j \le n} |p(z_j)|$?

6. A sequence $0 < a_1 < a_2 < \dots$ and positive number C are chosen so that

 $|e^{ia_1} + e^{ia_2} + ... + e^{ia_n}| \le C$ for all positive integer *n*. Prove that $a_n \ge \frac{n}{2C} - 2$ for all *n*.

7. Let the facets of an n-dimensional simplex be given by the equations $a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + a_{i,n+1} = 0$, i = 1, n+1. Prove that the volume of the simplex is $V_n = \frac{1}{n!} \left| \frac{\Delta^n}{\Delta \Delta \dots \Delta_n} \right|$, where $\Delta = \det(a_{ij})$, Δ_i is the algebraic complement of

element $a_{i,n+1}, i = \overline{1, n+1}$.