7. Does there exist a continuous function f : R — R such that

f(@), f(x) +me— f(z), f(2) + 2

are irrational for all irrational =7

Solution

7. Yes. The idea is to construct a strictly increasing continuous bijective
function f such that for every rational ¢ the value ¢ of f, f +m, e — f
and f(z) 4+ x are obtained at rational points. To this goal, we enumerate
all rational points as qi, ga, . ... After n-th step, our function is defined on a
finite set £, C Q (where Ey C Ey C Fjs..., and once we defined f(z) we
do not change it on further steps); f strictly increases on FE,; both E, and
f(E,) contain all numbers of the form k/n for integers k € [—n,n]. Also,
there exist the elements a,, by, c,,d, on E, such that f(a,) = f(b,) + 7 =
e — f(en) = dn + f(d,) = gn- If we manage to satisfy these properties, then
we determine the restriction of f on Q which defines f itself by continuity,
and f enjoys the required properties. Now how to do the step number n. This
step itself consists of adding one by one finitely many points (x, f(x)) to the
graph of f. For example, to construct the point d,, for which d,, + f(d,) = qn,
we find the consecutive numbers v < u for which f is already defined and
v+ f(v) < ¢, < u+f(u) (put u = 400 if all already defined values of x+ f(z)
exceed ¢,). Then either d,, = v or d, = u already works, or we may find d,
between v and u for which d,,+ f(v) < ¢, < dn+ f(u) (take for d,, any rational
number in the interval between max (v, ¢, — f(u)) and min(u, ¢, — f(v))) and
put f(d,) := g, — d,. Satisfying other conditions, including making £, and
f(E,) dense in the aforementioned sense, is obtained similarly.



Problem 1

Let d,, be the determinant of the n X n matrix whose entries, from left to

right and then from top to bottom, are cos1,cos2,...,cosn?. (For example,
cosl cos2 cos3

d3 = |cos4 cosb cos6|. The argument of cos is always in radians, not de-
cos7 cos8 cos9

grees.)

Evaluate lim,,_, o d,,.
Solution

The limit is zero, because the determinant is zero for n > 3. Let D,, be the
matrix that we’re taking the determinant of. Let E,, be the matrix

o o2 e ein 1
ei(n-‘rl) ei(n+2) c.. g2in ein 4
E, = _ ) [ez o2 em]
ei(n27n+1) ei(n27n+2) . ein2 ei(n27n)

It is evident from the factorization shown that E,, has rank 1. So also does its
complex conjugate E, have rank 1. But then D, = 1E, + 1E,. The rank of a
sum of matrices is less than or equal to the sum of the ranks, so rank (D,,) < 2.
Hence for n > 3, det(D,) = 0.

Remark: The terms in the second row have the form cos(n+k). Then if the sec-
ond row is multiplied by 2 cos n, we will get 2 cos n cos(n+k) = cos(2n+k)+cos k,
which is the sum of the first row and the third row and we are done.



Problem 2

There are 10 people in a team, and for any two people. their compatibility
is defined — a non-negative number. For a triple of members in a team, define
the coherence of this triple as the product of the three pairwise compatibilities
of the members of the triple. Find the largest possible value of the sum
of coherences of all 120 triples, provided that the sum of squares of all 45
pairwise compatibilities is 45.

Solution.

The answer is 120. This value is obtained when all compatibilities are
equal to 1. Let us prove that the sum of coherences is not greater than
120. Consider a symmetric matrix M of compatibilities (with zeros on the
diagonal). Its trace is 0, and the trace of its square is equal to twice the
sum of the squares compatibilities, i.e., 1. Note that the trace of the cube
of the matrix M is equal to the sum of coherences of triples multiplied by
6. Thus, we need to prove that the trace of M? is at most 720. Let’s denote
the eigenvalues of the matrix M by ty,...,t1o. Then, > t; = 0, > 2 = 90.
Suppose that t; > 9 for some ¢. Then the sum of the remaining eigenvalues
is less than —9, and therefore for the sum of their squares we have

D= ((—1=2)+(t;+1)°) = -9-2) t;>9,
j#i i i

also t? > 81 and the sum of all ten squares is greater than 90 — contradiction.
So, t; < 9 for all 7, therefore

0> (t;—9)(t:+1)° Zt3—72t2—172t—90—2t3

%

as requested.



Problem: Let f,g:[0,2025] > R be differentiable functions such that

fOZOZSf(x)dx = 0. Prove that there is some ¢ € (0,2025) satisfying

2025 2025

£ j 9G)dx + g'(0) j f(@)dx = 2 (g (O).

Solution: Define

h(t) = (J, f()dx) (fy,5 9()dx)

f, g are differentiable, hence h is twice differentiable. We have h(0) = h(2025) = 0,
thus by Rolle’s Theorem there exists 8 € (0,2025) such that h’'(8) = 0. Notice that

R () = f(t) [, 9()dx + g(t) [, f(x)dx

and also by condition fozozsf(x)dx = 0 we have h'(2025) = 0 = h'(8), therefore by
Rolle’s Theorem we can find ¢ € (6,2025) € (0,2025) such that h"(c)=0, that is

2025 c
RO = [ g@dx+g@f©+9@© [ f@dxr+ g@f @ =
¢ 2025 0 2025
=29 - f© | g@dx+g@( [ f@ax
2025 ¢ 2025 0 2025

- | fein =21@e@ - 1@ | gwdx-g© [ faax
Therefore h''(c) = 0 implies the

2025 2025

@ [ g+ g© [ f@dx =2 g0,



The measure yu is given and finite on [—1; 1]. Let

a(z) = fd“(x), Z2€D ={z€C: |z <1}

Any complex number can be writtenas z = r - e'? wherer > 0, @ € [0,2m]. Prove that

27T

f |;2(rei"’)|pd(p <o, pe(01).

Solution. Let

1

fdu(x) = C.
-1
If x| < 0,5 then |1 —xz| > 1— |x|-|z| 21— |x| = 0,5. That is why
1/2
) _ac. 1)
|1 — xz|
-1/2

Next, if z = re’” € D and |x| = 0,5 we will have

r
|1 — xz| = /(1 — xr cos ¢)? + (xr sin @)2 > |x| - r - |sin @] ZE- |sin ¢|.

Therefore
-1/2 1
du(x du(x
j u()Jr u()_ . @
|1 — xz| |1 —xz| ~ r-|sin ]|
1 1/2

From (1) and (2) it follows that

1

d 4C

s [ <2
Z1

xz| = r-|sing|

We also know that

sinng-x, xE[O,g].

That is why

27T

ac\? o d AC\P : d
Waos ()| mrgp =+ ) | mmgr =
r |sin @|P r |sin @|P
0 0
2 2w (4C)P

=1—p. — < oo, pe(01).m

0

s
2
27‘[C P jd(p_ 27TC> plP
2
0




Problem 5.

Let a, be the number of complex roots of the equation 2" + 2z +2 =0
lying in the disk |z| < 1. Are there such positive integer numbers m and k
that a, ., = a, + k for all sufficiently large n?

Solution

5. No. First, note that all roots of the polynomial p,(z) = 2™ + 2z + 2
in the unit disk are simple (not multiple): indeed, p/,(2) = nz""! + 2, so, if
pn(z) =Pl (2) = 0, then 0 = np,(2) — 2p),(2) = (2n — 2)z + 2n, which is not
0 in the unit disk.

Further, there are two points a and @ on the circle for which |P(«)| =
|P(a)| =1, where P(z) =2z + 2.

Note that « is not a root of unity. Indeed, o and @ are the roots of the
equation (2z+2)(2/242) = 1,s0 z+1/z = —7/4. Note that if z4+1/z = a/2™
with odd a and natural m, then 22 +1/2? = (2 + 1/2)? — 2 = a?/2?™ — 2
is an irreducible fraction with denominator 22™. Continuing in this fashion,
we see that all the numbers o + 1/, o +1/a?, a* +1/a*, ... are pairwise
distinct, which is impossible if « is a root of unity.

The points a and @ divide the unit circle into arcs D, and D_, on D,
we have |P(z)| > 1, on D_ we have |P(z)| < 1. Let’s count the number of
roots z"™ 4+ P(z) in the unit disk using the argument principle. On D, we
have 2" + P(z) = P(z)(1 + 2"/P(z)), the second multiplier always lies in
the right half-plane, so that the change of of its argument as we move along
D, is bounded. The change of the argument of P(z) as we move along D
is also bounded (it does not depend on n). On D_ we write 2" + P(z) =
2™(1 + P(z)/2™). The second factor is again in the right half-plane, so, the
the change of its argument is bounded, and the change of the argument of
the first factor equals 6 - n, where 0 is the length of D_. But /7 is irrational
(as « is not a root of unity), thus, the limit lima, /n eists and is irrational.
While, if a1 = a,, + m for large enough n, then lima, /n = m/k.
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Problem 6 Does the equation = 42925 have a solution defined on the whole real axis and

o drt
not identically equal to zero?

Solution. Let y,(x) be the maximally extended solution to the equation with initial values

Ya(0) = 1, 5,(0) =0, y,(0) = a, y, (0) = 0.

Let a* be the supremum of the set A consisting of all a € R with the related solution y,(z) having
at least one zero. If a; € A and ay < a;, then monotonic considerations yield as € A.

Let £(a) be the minimal x > 0 such that y,(z) = 0. The implicit function theorem provides
continuity of £ on (—oo;a*). To apply this theorem we need the condition v/, (£(a)) # 0. But, if it
does not hold for some a < a*, i. e. y,({(a)) = y.(£(a)) = 0, then, due to the inequality v ({(a)) =

a

Yy (0) + fog(a) y(5)*%ds > 0, we obtain y”(£(a)) = 0. Really, if y”(£(a)) < 0, then y,(z) < 0 at some
x € (0;£(a)), which contradicts to the definition of (a). But, if y”(£(a)) > 0, then any small increase
of a produces a solution, which by monotonic considerations must be positive at some point, as well
as its derivatives ¢/, 3", ¢, and therefore never vanishes. This is possible only if a = a*.

Thus, the function £(a) is continuous as well as y”(£(a)). The last one is negative for a < 0 with
sufficiently large absolute value and positive for a € A sufficiently close to a*. So, there exists b € A
such that y;'(£(b)) = 0.

Note that for our equation, the reflections x — —x and y — —y as well as translations along the
x-axis transform any solution to another one. So, the solution y, defined on the segment [0;£(b)] can
be extended onto the segment [—£(b); 0] by the horizontal reflection and onto the segment [£(D); 2£(D)]
by the rotation around the point (£(b),0). Extending the solution in both directions on and on, we
obtain a periodic solution defined on the whole real axis.



